Given the graph, find the distance of GH. Round to the nearest tenth.
![Given the graph find the distance of GH Round to the nearest tenth class=](https://us-static.z-dn.net/files/d34/55839b9c4cd984871e19f5a0c63a8a77.jpg)
Answer:
GH = 6.3 units
Step-by-step explanation:
Assuming that 1 box represents 1 unit, the coordinate pair of G = (-2, -3), while H = (0, 3).
Distance between G and H = [tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
Let,
[tex] G(-2, -3) = (x_1, y_1) [/tex]
[tex] H(0, 3) = (x_2, y_2) [/tex]
[tex] GH = \sqrt{(0 - (-2))^2 + (3 - (-3))^2} [/tex]
[tex] GH = \sqrt{(2)^2 + (6)^2} [/tex]
[tex] GH = \sqrt{4 + 36} = \sqrt{40} [/tex]
[tex] GH = 6.3 units [/tex] (nearest tenth)