Answer:
From
m∠1 = m∠4
m∠1 + m∠2 = m∠3 + m∠4
m∠2 = m∠3 [tex]{}[/tex] Identity property
∠2 ≅ ∠3 [tex]{}[/tex] [tex]{}[/tex] Equal angles are congruent
Step-by-step explanation:
Given [tex]{}[/tex] Reason
∠1 and ∠2 are supplementary [tex]{}[/tex] Given
Therefore;
m∠1 + m∠2 = 180° [tex]{}[/tex] Supplementary ∠s sum up to 180°
∠3 and ∠4 are supplementary [tex]{}[/tex] Given
Therefore;
m∠3 + m∠4 = 180° [tex]{}[/tex] Supplementary ∠s sum up to 180°
From which we have;
m∠1 + m∠2 = 180° = m∠3 + m∠4 [tex]{}[/tex] [tex]{}[/tex] Transitive property
m∠1 + m∠2 = m∠3 + m∠4
∠1 ≅ ∠4 [tex]{}[/tex] Given
m∠1 = m∠4 [tex]{}[/tex] Congruent ∠s have equal measure
Therefore;
m∠1 + m∠2 = m∠3 + m∠1 [tex]{}[/tex] [tex]{}[/tex] Transitive property
Therefore;
m∠1 + m∠2 - m∠1= m∠3 + m∠1 - m∠1 [tex]{}[/tex]Subtraction property
m∠1 - m∠1 + m∠2 = m∠3 + m∠1 - m∠1 [tex]{}[/tex]
0 + m∠2 = m∠3 + 0 [tex]{}[/tex] Inverse property
Therefore;
m∠2 = m∠3 [tex]{}[/tex] Identity property
∠2 ≅ ∠3 [tex]{}[/tex] [tex]{}[/tex] Equal angles are congruent.