Answer:
a) [tex]c=\frac{-1+\sqrt{13}}{2}[/tex] and [tex]c=\frac{-1-\sqrt{13}}{2}[/tex]
Step-by-step explanation:
The idea for the solution of this equation is to find the value of c where both parts of the piecewise-defined function are the same. So we need to take the parts of the function and set them equal to each other, so we get:
[tex]3-x^{2}=x[/tex]
and then solve for x. We move everything to one side of the equation so we get:
[tex]x^{2}+x-3=0[/tex]
and we use the quadratic formula:
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
and we substitute:
[tex]x=\frac{-1\pm \sqrt{(1)^2-4(1)(-3)}}{2(1)}[/tex]
and solve
[tex]x=\frac{-1\pm \sqrt{1+12}}{2}[/tex]
[tex]x=\frac{-1\pm \sqrt{13}}{2}[/tex]
so our two answers are:
a) [tex]c=\frac{-1+\sqrt{13}}{2}[/tex] and [tex]c=\frac{-1-\sqrt{13}}{2}[/tex]