Given :
Three points , P(4, 3, 4), Q(2, 1, 3), R(2, 7, 0) .
To Find :
The length of sides .
Given :
We know , length of two points P(x,y ,z) and Q(a,b,c) is given by :
[tex]L=\sqrt{(x-a)^2+(y-b)^2+(z-c)^2}[/tex]
Length of PQ :
[tex]PQ=\sqrt{(4-2)^2+(3-1)^2+(4-3)^2}\\\\PQ=\sqrt{4+4+1}=\sqrt{9}\\\\PQ=3[/tex]
Length of QR :
[tex]QR=\sqrt{(2-2)^2+(1-7)^2+(3-0)^2}\\\\QR=\sqrt{0+6^2+3^2}\\\\QR=\sqrt{36+9}\\\\QR=\sqrt{45}\\\\QR=3\sqrt{5}[/tex] :
Length of RP :
[tex]RP=\sqrt{(2-4)^2+(7-3)^2+(0-4)^2}\\\\RP=\sqrt{2^2+4^2+4^2}\\\\RP=\sqrt{4+16+16}\\\\RP=\sqrt{36}\\\\RP=6[/tex]
Hence , this is the required solution .