Consider the Line L(t) = <2+t,5-4t>. Then L intersects:

The x- axis at the point (3.25,0) when t = 5/4

The y- axis at the point (0, 13) when t = -2

The parabola y = x^2 at the points ___ and ___ when t = ____ and ____

Respuesta :

Answer:

The parabola [tex]y=x^{2}[/tex] at the points [tex](-2+\sqrt{17},21-4\sqrt{17})[/tex] and [tex](-2-\sqrt{17},21+4\sqrt{17})[/tex] when [tex]t=t_{1}=-4+\sqrt{17}[/tex] and [tex]t=t_{2}=-4-\sqrt{17}[/tex]

Step-by-step explanation:

We have the following line written in parametric form :

[tex]L(t)=(2+t,5-4t)[/tex] with [tex]t[/tex] ∈ IR.

In order to find the intersection between [tex]L(t)[/tex] and the parabola [tex]y=x^{2}[/tex] we know that ''[tex]2+t[/tex]'' is the x-coordinate of the line and ''[tex]5-4t[/tex]'' is the y-coordinate of the line. Now, to solve this problem we need to find the values of ''[tex]t[/tex]'' in which the intersection occurs. We can do this by replacing the components    ''[tex]x[/tex]'' and ''[tex]y[/tex]'' of [tex]L(t)[/tex] in the equation of the parabola ⇒

[tex]L(t)=(2+t,5-4t)[/tex] = ( x component , y component ) = ( x , y ) ⇒

In the parabola : [tex]y=x^{2}[/tex] ⇒ [tex]5-4t=(2+t)^{2}[/tex]

Solving the equation we find that :

[tex]t^{2}+8t-1=0[/tex]

Using the quadratic formula with

[tex]a=1[/tex] , [tex]b=8[/tex] and [tex]c=-1[/tex]

We find that the two possible values for t :

[tex]t_{1}=\frac{-b+\sqrt{b^{2}-4ac}}{2a}[/tex]     and  [tex]t_{2}=\frac{-b-\sqrt{b^{2}-4ac}}{2a}[/tex]

are [tex]t_{1}=-4+\sqrt{17}[/tex] and [tex]t_{2}=-4-\sqrt{17}[/tex]

This values [tex]t_{1}[/tex] and [tex]t_{2}[/tex] are the values of the parameter t where the line intersects the parabola so we can find the points by replacing the values of the parameter in the equation [tex]L(t)[/tex] :

[tex]L(t_{1})=(-2+\sqrt{17},21-4\sqrt{17})[/tex] and

[tex]L(t_{2})=(-2-\sqrt{17},21+4\sqrt{17})[/tex]

The final answer is

The parabola [tex]y=x^{2}[/tex] at the points [tex](-2+\sqrt{17},21-4\sqrt{17})[/tex] and [tex](-2-\sqrt{17},21+4\sqrt{17})[/tex] when [tex]t=t_{1}=-4+\sqrt{17}[/tex] and [tex]t=t_{2}=-4-\sqrt{17}[/tex]

RELAXING NOICE
Relax