Respuesta :

Answer:

I = 91.125

Step-by-step explanation:

Given that:

[tex]I = \int \int_E \int zdV[/tex] where E is bounded by the cylinder [tex]y^2 + z^2 = 81[/tex] and the planes x = 0 , y = 9x and z = 0 in the first octant.

The initial activity to carry out is to determine the limits of the region

since curve z = 0 and [tex]y^2 + z^2 = 81[/tex]

∴ [tex]z^2 = 81 - y^2[/tex]

[tex]z = \sqrt{81 - y^2}[/tex]

Thus, z lies between 0 to [tex]\sqrt{81 - y^2}[/tex]

GIven curve x = 0 and y = 9x

[tex]x =\dfrac{y}{9}[/tex]

As such,x lies between 0 to [tex]\dfrac{y}{9}[/tex]

Given curve x = 0 , [tex]x =\dfrac{y}{9}[/tex] and z = 0, [tex]y^2 + z^2 = 81[/tex]

y = 0 and

[tex]y^2 = 81 \\ \\ y = \sqrt{81} \\ \\ y = 9[/tex]

∴ y lies between 0 and 9

Then [tex]I = \int^9_{y=0} \int^{\dfrac{y}{9}}_{x=0} \int^{\sqrt{81-y^2}}_{z=0} \ zdzdxdy[/tex]

[tex]I = \int^9_{y=0} \int^{\dfrac{y}{9}}_{x=0} \begin {bmatrix} \dfrac{z^2}{2} \end {bmatrix} ^ {\sqrt {{81-y^2}}}_{0} \ dxdy[/tex]

[tex]I = \int^9_{y=0} \int^{\dfrac{y}{9}}_{x=0} \begin {bmatrix} \dfrac{(\sqrt{81 -y^2})^2 }{2}-0 \end {bmatrix} \ dxdy[/tex]

[tex]I = \int^9_{y=0} \int^{\dfrac{y}{9}}_{x=0} \begin {bmatrix} \dfrac{{81 -y^2} }{2} \end {bmatrix} \ dxdy[/tex]

[tex]I = \int^9_{y=0} \begin {bmatrix} \dfrac{{81x -xy^2} }{2} \end {bmatrix} ^{\dfrac{y}{9}}_{0} \ dy[/tex]

[tex]I = \int^9_{y=0} \begin {bmatrix} \dfrac{{81(\dfrac{y}{9}) -(\dfrac{y}{9})y^2} }{2}-0 \end {bmatrix} \ dy[/tex]

[tex]I = \int^9_{y=0} \begin {bmatrix} \dfrac{{81 \ y -y^3} }{18} \end {bmatrix} \ dy[/tex]

[tex]I = \dfrac{1}{18} \int^9_{y=0} \begin {bmatrix} {81 \ y -y^3} \end {bmatrix} \ dy[/tex]

[tex]I = \dfrac{1}{18} \begin {bmatrix} {81 \ \dfrac{y^2}{2} - \dfrac{y^4}{4}} \end {bmatrix}^9_0[/tex]

[tex]I = \dfrac{1}{18} \begin {bmatrix} {40.5 \ (9^2) - \dfrac{9^4}{4}} \end {bmatrix}[/tex]

[tex]I = \dfrac{1}{18} \begin {bmatrix} 3280.5 - 1640.25 \end {bmatrix}[/tex]

[tex]I = \dfrac{1}{18} \begin {bmatrix} 1640.25 \end {bmatrix}[/tex]

I = 91.125

RELAXING NOICE
Relax