We can reasonably model a 75 W incandescent light bulb as a sphere 6.0 cm in diameter. Typically, only about 5 % of the energy goes to visible light: the rest foes largely to nonvisible infrared radiation.(a) What is the visible light intensity (in W/m^2) at the surface of the bulb?(b) What are the amplitudes of the electric and magnetic fields at this surface, for a sinusoidal wave with this intensity?

Respuesta :

Answer:

a

[tex]I  =  6637 \  W/m^2[/tex]

b

[tex]E_{max} =  500 \ N/m[/tex]

And

[tex]B_{max} =  1.67*10^{-6} \  T[/tex]

Explanation:

From the question we are told that  

   The  power is  [tex]P =  75 \  W[/tex]

   The  diameter is  [tex]d =  6.0 \ cm =  0.06 \  m [/tex]

Generally the radius is mathematically represented as

      [tex]r =  \frac{d}{2}[/tex]

=>   [tex]r =  \frac{ 0.06}{2}[/tex]

=>   [tex]r =  0.03 \  m[/tex]

Generally the area of the sphere is mathematically evaluated as

          [tex]A = 4 \pi r^2[/tex]

=>      [tex]A = 4 * 3.142 *  (0.03)^2[/tex]

=>       [tex]A =  0.0113 \ m^2[/tex]

Generally the total  Intensity of the  incandescent light bulb is mathematically represented as

     [tex]I= \frac{P}{A}[/tex]

=>    [tex]I  =  \frac{75}{ 0.0113}[/tex]

=>   [tex]I  =  6637 \  W/m^2[/tex]

Given that 5%  of the energy goes to visible  light

Then the intensity that goes visible light is  

    [tex]I_v  =  0.05 * 6637[/tex]

    [tex]I_v  =  332 \ W/m^2[/tex]

The amplitude of the electric field at the surface is mathematically represented as

      [tex]E_{max} =  \sqrt{\frac{2 * I_v}{\epsilon_o *  c } }[/tex]

=>   [tex]E_{max} =  \sqrt{\frac{2 * 332}{ 8.85*10^{-12} *  3.0*10^8} }[/tex]

=>     [tex]E_{max} =  500 \ N/m[/tex]

The amplitude of the magnetic  field at the surface is mathematically represented as

     [tex]B_{max} =  \frac{E_{max}}{c}[/tex]

=>     [tex]B_{max} =  \frac{ 500}{3.0*10^8}[/tex]

=>   [tex]B_{max} =  1.67*10^{-6} \  T[/tex]

RELAXING NOICE
Relax