Answer:
2.35 + j8.34 Ω
Explanation:
Voltage = V[tex]_{L}[/tex] = 240 V rms
supplying power = S[tex]_{s}[/tex] = 8 kVA
power factor = pf[tex]_{s}[/tex] = 0.6
Let P₁ represents one load draws 3kW at unity powder factor
The power angle is:
θ[tex]_{s}[/tex] = cos⁻¹ pf[tex]_{s}[/tex] = cos⁻¹ 0.6 = 53.13°
Complex power supplied source is:
S[tex]_{s}[/tex] = S[tex]_{s}[/tex] < θ[tex]_{s}[/tex] = 8<53.13° kVA
Complex power for first load:
S₁ = P₁ = 3kVA
Since the power angle of first load is θ₁ = 0°
According to principle of conservation of AC power, the power of second load is:
S₂ = S[tex]_{s}[/tex] - S₁
= 8<53.13° - 3
= 6.65<74.29° kVA
Since the second load is a Y connected load the phase voltage:
V[tex]_{p}[/tex] = V[tex]_{L}[/tex] / [tex]\sqrt{3}[/tex]
= 240/1.732051
= 138.564
= 138.56 V
Complex power of second load:
S₂ = 3 V[tex]_{p}[/tex]² / Z[tex]_{p}[/tex]
impedance per phase of the second load:
Z[tex]_{p}[/tex] = 3 V[tex]_{p}[/tex]² / S₂
= 3 (138.56)² / 6.65<74.29°
= 3(19198.8736) / 6.65<74.29°
= 57596.6208 / 6.65<74.29°
Z[tex]_{p}[/tex] = 2.35 + j8.34Ω