Respuesta :
Answer:
(a) w = [tex](\frac{-7}{4} , \frac{9}{4}, \frac{1}{2})[/tex]
(b) -2u + 3v - 5w = ([tex]\frac{39}{4}[/tex], [tex]\frac{-54}{4}[/tex], [tex]\frac{3}{2}[/tex])
Step-by-step explanation:
Given:
u = (−2, 3, 1)
=> u = -2i + 3j + k --------------------------(i)
v = (−1, −1, 2)
=> v = -i - j + 2k --------------------(ii)
3u − 2v − 4w = (3, 2, −3)
=> 3u − 2v − 4w = 3i + 2j - 3k ------------------(iii)
(A) TO FIND THE VECTOR w
Let:
w = (a, b, c) = ai + bj + ck
(a) Substitute u, v and w into equation (iii)
3u − 2v − 4w = 3i + 2j - 3k
3(-2i + 3j + k) - 2(-i - j + 2k) - 4(ai + bj + ck) = 3i + 2j - 3k
(b) Solve the equation in step (a) by opening the brackets and collecting like terms
(-6i + 9j + 3k) - (-2i - 2j + 4k) - (4ai + 4bj + 4ck) = 3i + 2j - 3k
open brackets
-6i + 9j + 3k + 2i + 2j - 4k - 4ai - 4bj - 4ck = 3i + 2j - 3k
collect like terms
-6i + 2i - 4ai + 9j + 2j - 4bj + 3k - 4k - 4ck = 3i + 2j - 3k
i(-4 - 4a) + j(11 - 4b) + k(-1 - 4c) = 3i + 2j - 3k
(c) Solve for a, b and c in step (b)
Comparing both sides of the equation, we have;
-4 - 4a = 3 ----------(*)
11 - 4b = 2 -----------(**)
-1 - 4c = -3 ------------(***)
From (*)
4a = -4 - 3
4a = -7
a = [tex]\frac{-7}{4}[/tex]
From (**)
4b = 11 - 2
4b = 9
b = [tex]\frac{9}{4}[/tex]
From (***)
-1 - 4c = -3
4c = -1 + 3
4c = 2
c = [tex]\frac{2}{4}[/tex]
c = [tex]\frac{1}{2}[/tex]
Remember that
w = (a, b, c)
w = ai + bj + ck
Therefore,
w = [tex](\frac{-7}{4} , \frac{9}{4}, \frac{1}{2})[/tex]
(B) TO FIND -2u + 3v - 5w
Remember that;
u = (−2, 3, 1)
v = (−1, −1, 2),
w = [tex](\frac{-7}{4} , \frac{9}{4}, \frac{1}{2})[/tex]
Substitute u, v, w into the expression as follows;
-2(−2, 3, 1) + 3(−1, −1, 2) - 5[tex](\frac{-7}{4} , \frac{9}{4}, \frac{1}{2})[/tex]
Expand
(4, -6, -2) + (−3, −3, 6) - [tex](\frac{-35}{4} , \frac{45}{4}, \frac{5}{2})[/tex]
Collect like terms
(4-3+[tex]\frac{35}{4}[/tex], -6-3-[tex]\frac{45}{4}[/tex], -2+6-[tex]\frac{5}{2}[/tex])
Solve
([tex]\frac{39}{4}[/tex], [tex]\frac{-54}{4}[/tex], [tex]\frac{3}{2}[/tex])
Therefore, -2u + 3v - 5w = ([tex]\frac{39}{4}[/tex], [tex]\frac{-54}{4}[/tex], [tex]\frac{3}{2}[/tex])
