Answer:
The answer is "239.62%".
Step-by-step explanation:
Given value:
[tex]\bold{\sin(x)=x- \frac{x^3}{3!}+\frac{x^5}{5!} - \frac{x^7}{7!}+....}[/tex]
Solve the first three values:
[tex]\sin(x)=x- \frac{x^3}{3!}+\frac{x^5}{5!}[/tex]
put the value of sin(4.1):
[tex]\to \sin(4.1)=(4.1)- \frac{(4.1)^3}{3!}+\frac{(4.1)^5}{5!} \\\\[/tex]
[tex]=(4.1)- \frac{(4.1)^3}{3!}+\frac{(4.1)^5}{5!} \\\\=(4.1)- \frac{68.92}{3 \times 2\times 1}+\frac{1158.56}{5\times 4 \times 3 \times 2 \times 1}\\\\[/tex]
[tex]=(4.1)- 11.48+9.65\\\\= 2.27[/tex]
The actual value of [tex]\sin(4.1) = -1.59[/tex]
Calculating the percentage relative approximate error value:
Formula:
[tex]=\frac{actual \ value - \ approx \ value }{actual \ value} \times 100\\\\[/tex]
[tex]=\frac{-1.59 - 2.27 }{-1.59} \times 100\\\\= \frac{-3.81}{-1.59} \times 100\\\\= \frac{3.81}{1.59} \times 100\\\\=239.62 \ \%[/tex]