Respuesta :
Answer:
1/2 and 3/2
Step-by-step explanation:
Given the expression u= av + bw where u = 2i + j, v = i + j, and w = i - j, to find the scalars a and b, we will first substitute the vectors into the expression given as shown;
u= av + bw
2i + j = a( i + j)+b(i-j)
open the parenthesis
2i + j = ai+aj+bi-bj
collect like terms at the right hand side of the equation
2i + j = ai+bi+aj-bj
2i + j = (a+b)i+(a-b)j
compare the coefficient of complex value i and j on both sides
a+b = 2 ............... 1
a-b = 1................. 2
solve the resulting equation simultaneously using elimination method
Subtract both equation from each other.
(a-a) +(b-(-b))= 2-1
0+2b = 1
b = 1/2
Substitue b = 1/2 into equation 2 to get a
From equation 2, a = 1+b
a = 1 + 1/2
b = 3/2
Hence the scalars a and b are 1/2 and 3/2 respectively
[tex]a=\frac{3}{2},b=\frac{1}{2}[/tex]
A complex number is of the form [tex]\boldsymbol{a+ib}[/tex] where [tex]a,b[/tex] are real numbers.
[tex]u=2i+j[/tex]
[tex]v=i+j[/tex]
[tex]w=i-j[/tex]
[tex]u=av+bw[/tex]
So,
[tex]2i+j=a(i+j)+b(i-j)[/tex]
[tex]2i+j=(a+b)i+(a-b)j[/tex]
Therefore,
[tex]2=a+b\\1=a-b[/tex]
Add these equations.
[tex]3=2a\\\frac{3}{2}=a[/tex]
So,
[tex]1=\frac{3}{2}-b\\\\b=\frac{3}{2}-1\\[/tex]
[tex]=\frac{1}{2}[/tex]
For more information:
https://brainly.com/question/19013932?referrer=searchResults
