Verify that ϕ(x)=2(1−cex), where cis an arbitrary constant, is a one-parameter family of solutions to dydx=y(y−2)2.Graph the solution curves corresponding to c=0,±1,±2using the same coordinate axes.

Respuesta :

Answer:

Following are the solution:

Step-by-step explanation:

Given equation:

[tex]\frac{dx}{dy}= \frac{y(y-2)}{2}........(a)[/tex]

[tex]\Phi (x) = \frac{2}{1-ce^x}[/tex]

In the question [tex]\Phi (x)[/tex], is a solution of the equation (a) only if when [tex]\Phi (x)[/tex]satisfies equation (a):

let us find [tex]\Phi' (x)[/tex]:-

[tex]\Phi(x) =\frac{d}{dx} \Phi (x)=\frac{d}{dx}(\frac{2}{1-ce^x})[/tex]

                        [tex]= 2 \frac{d}{dx}({1-ce^x}^-1)\\\\= 2 (-1) ({1-ce^x})^{-2} \frac{d}{dx}({1-ce^x})\\\\= -2 ({1-ce^x})^{-2} (-ce^x})\\\\= 2(-ce^x) ({1-ce^x})^{-2} \\\\[/tex]

Now:

[tex]\frac{dy}{dx}=\frac{y(y-2)}{2}\\\\\frac{d}{dx}\Phi (x) =\frac{\Phi (x) (\Phi (x)-2)}{2}\\[/tex]

by subtracting the value of [tex]\Phi (x)[/tex]and [tex]\frac{d}{dx}[/tex][tex]\Phi (x)[/tex],we get:

[tex]\to[/tex][tex]2ce^x(1-ce^x)^-2= \frac{(\frac{2}{1-ce^x})(\frac{2}{1-ce^x})^{-2}}{2}[/tex]

[tex]=2ce^x (1-ce^x)^{-2}=\frac{1}{2}[\frac{2}{1-ce^x}(\frac{2-2(1-ce^x)}{1-ce^x)}]\\\\= \frac{1}{1-ce^x} \times \frac{2ce^x}{1-ce^x}\\\\=\frac{2ce^x}{(1-ce^x)^2}\\\\=2ce^x (1-ce^x)^-2[/tex]

[tex]\bold{2ce^x(1-ce^x)^-2=2ce^x(1-ce^x)^-2}[/tex]

[tex]\Phi (x)[/tex] the solution of the given equation. [tex]\Phi (x)[/tex] has one Parameter Family of

[tex]\frac{dy}{dx}=\frac{y(y-2)}{2}[/tex]

[tex]\Phi (x) =\frac{2}{1-ce^x}\\\\_{when} \ \ \ c= 0 \to \Phi (x) =\frac{2}{1-0\times e^x}=2\\\\_{when} \ \ \ c= 1 \to \Phi (x) =\frac{2}{1-1\times e^x}=\frac{2}{1-e^x}\\\\_{when} \ \ \ c= -1 \to \Phi (x) =\frac{2}{1-(-1)\times e^x}=\frac{2}{1+e^x}\\\\_{when} \ \ \ c= 2 \to \Phi (x) =\frac{2}{1-(-2)\times e^x}=\frac{2}{1-2e^x}\\\\_{when} \ \ \ c= -2 \to \Phi (x) =\frac{2}{1-(-2)\times e^x}=\frac{2}{1+2e^x}\\\\[/tex]

Ver imagen codiepienagoya
ACCESS MORE
EDU ACCESS