Answer:
V = 36Π cubic Centimetres
Step-by-step explanation:
Step(i):-
Volume of the solid
The Volume of the solid formed by revolving the region bounded by the curve y = f(x) and rotated around the x-axis defined by
[tex]V = \pi \int\limits^a_b {[f(x)]^{2} } \, d x[/tex]
Step(ii):-
Given two curves are y = x² and y = 9
The point of intersection of two curves
y = x²...(i)
and y = 9 ...(ii)
Equating both equations , we get
x² - 9 =0
⇒ x² - 3² =0
⇒ (x+3)(x-3) =0
⇒ x+3=0 and x-3=0
x = 3 ⇒ y = 9
x = -3 ⇒y = 9
The point of intersection ( -3,9) and (3,9)
Step(iii):-
[tex]V = \pi \int\limits^a_b {[(f(x)]^{2} } \, -[g(x)]^{2})d x[/tex]
The limits x- varies from -3 to 3
[tex]V =\pi (\int\limits^3_3 {x^{2} } \, dx +\int\limits^3_3{9} \, dx[/tex]
[tex]V =\pi (\frac{x^{3} }{3} -9 x)^{3} _{-3}[/tex]
[tex]V= \pi ( \frac{27}{3} - 9(3) - (\frac{-27}{3} -9(-3))[/tex]
V = π ( |-36| = 36Π cubic Centimetres
Final answer:-
The volume of the solid
V = π ( |-36| = 36Π cubic Centimetres