Respuesta :
Complete Question
The complete question is shown on the first uploaded image
Answer:
The solution is [tex]\frac{\delta (x,y)}{\delta (u, v)} | = 10e^{-4u}[/tex]
Step-by-step explanation:
From the question we are told that
[tex]x = e^{-2a} cos (5v)[/tex]
and [tex]y = e^{-2a} sin(5v)[/tex]
Generally the absolute value of the determinant of the Jacobian for this change of coordinates is mathematically evaluated as
[tex]| \frac{\delta (x,y)}{\delta (u, v)} | = | \ det \left[\begin{array}{ccc}{\frac{\delta x}{\delta u} }&{\frac{\delta x}{\delta v} }\\\frac{\delta y}{\delta u}&\frac{\delta y}{\delta v}\end{array}\right] |[/tex]
[tex]= |\ det\ \left[\begin{array}{ccc}{-2e^{-2u} cos(5v)}&{-5e^{-2u} sin(5v)}\\{-2e^{-2u} sin(5v)}&{-2e^{-2u} cos(5v)}\end{array}\right] |[/tex]
[tex]Let \ a = -2e^{-2u} cos(5v), \\ b=-2e^{-2u} sin(5v),\\c =-2e^{-2u} sin(5v),\\d=-2e^{-2u} cos(5v)[/tex]
So
[tex]\frac{\delta (x,y)}{\delta (u, v)} | = |det \left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right] |[/tex]
=> [tex]\frac{\delta (x,y)}{\delta (u, v)} | = | a * b - c* d |[/tex]
substituting for a, b, c,d
=> [tex]\frac{\delta (x,y)}{\delta (u, v)} | = | -10 (e^{-2u})^2 cos^2 (5v) - 10 e^{-4u} sin^2(5v)|[/tex]
=> [tex]\frac{\delta (x,y)}{\delta (u, v)} | = | -10 e^{-4u} (cos^2 (5v) + sin^2 (5v))|[/tex]
=> [tex]\frac{\delta (x,y)}{\delta (u, v)} | = 10e^{-4u}[/tex]

Otras preguntas
