Suppose a change of coordinates T:R2→R2 from the uv-plane to the xy-plane is given by x=e−2ucos(5v), y=e−2usin(5v). Find the absolute value of the determinant of the Jacobian for this change of coordinates.

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

The solution is  [tex]\frac{\delta  (x,y)}{\delta (u, v)} | = 10e^{-4u}[/tex]

Step-by-step explanation:

From the question we are told that

        [tex]x =  e^{-2a} cos (5v)[/tex]

and  [tex]y  =  e^{-2a} sin(5v)[/tex]

Generally the absolute value of the determinant of the Jacobian for this change of coordinates is mathematically evaluated as

     [tex]| \frac{\delta  (x,y)}{\delta (u, v)} | =  | \ det \left[\begin{array}{ccc}{\frac{\delta x}{\delta u} }&{\frac{\delta x}{\delta v} }\\\frac{\delta y}{\delta u}&\frac{\delta y}{\delta v}\end{array}\right] |[/tex]

        [tex]= |\ det\ \left[\begin{array}{ccc}{-2e^{-2u} cos(5v)}&{-5e^{-2u} sin(5v)}\\{-2e^{-2u} sin(5v)}&{-2e^{-2u} cos(5v)}\end{array}\right]  |[/tex]

[tex]Let \   a =  -2e^{-2u} cos(5v),  \\ b=-2e^{-2u} sin(5v),\\c =-2e^{-2u} sin(5v),\\d=-2e^{-2u} cos(5v)[/tex]

So

     [tex]\frac{\delta  (x,y)}{\delta (u, v)} | = |det  \left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right] |[/tex]

=>    [tex]\frac{\delta  (x,y)}{\delta (u, v)} | = | a *  b  - c* d |[/tex]

substituting for a, b, c,d

=>    [tex]\frac{\delta  (x,y)}{\delta (u, v)} | =  | -10 (e^{-2u})^2 cos^2 (5v) - 10 e^{-4u} sin^2(5v)|[/tex]

=>   [tex]\frac{\delta  (x,y)}{\delta (u, v)} | =  | -10 e^{-4u} (cos^2 (5v)   + sin^2 (5v))|[/tex]

=>  [tex]\frac{\delta  (x,y)}{\delta (u, v)} | = 10e^{-4u}[/tex]

Ver imagen okpalawalter8
RELAXING NOICE
Relax