Use the position function s(t) = –4.9t2 + 500, which gives the height (in meters) of an object that has fallen for t seconds from a height of 500 meters. The velocity at time t = a seconds is given by the following.
lim t->a: (s(a) - s(t)) / (a - t)
Find the velocity of the object when t = 3. (Round your answer to two decimal places.)

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

The  value is  [tex]v(3) =  29.4 \  m/s[/tex]

Step-by-step explanation:

From the question we are told that

    [tex]s(t) =  -4.9t^2 + 500[/tex]

And  

    [tex]\lim_{t \to a}  \frac{s(a) - s(t)}{a-t}[/tex]

Generally s(t) at t = a is mathematically evaluated as

      [tex]s(a) =  -4.9a^2+ 500[/tex]

So

    [tex]s(a) - s(t) =  -4.9a^2 + 500 - ( -4.9t^2+500)[/tex]

     [tex]s(a) - s(t) =  -4.9a^2 + 500 +4.9t^2-500)[/tex]

      [tex]s(a) - s(t) = 4.9(t^2 - a^2)[/tex]

Thus the velocity is represented as

     [tex]v(t) =\lim_{t \to a}  \frac{s(a) - s(t)}{a-t} \equiv \lim_{t \to a} \frac{4.9(t^2 -  a^2 )}{ a-t}[/tex]

=>     [tex]v(t) = \lim_{t \to a}  - 4.9(a + t )[/tex]

=>      [tex]v(t) = -4.9 (a + a )[/tex]

=>      [tex]v(t) = -9.8a[/tex]

Now at  t =  3

=>  [tex]v(3) = -9.8 (3)[/tex]

=>   [tex]v(3) =  29.4 \  m/s[/tex]

Ver imagen okpalawalter8
RELAXING NOICE
Relax