Answer:
The magnitude is [tex]\Delta f(0,8) = 72[/tex]
The direction is [tex]i[/tex] i.e toward the x-axis
Step-by-step explanation:
From the question we are told that
The function is [tex]f(x, y) = 9sin(xy) \ \ \[/tex]
The point considered is [tex](0,8 )[/tex]
Generally the maximum rate of change of f at the given point and the direction is mathematically represented as
[tex]\Delta f(x,y) = [\frac{\delta f(x,y)}{\delta x } i + \frac{\delta f(x,y)}{\delta y } j ][/tex]
[tex]\Delta f(x,y) = [\frac{\delta (9sin(xy))}{\delta x} i + \frac{\delta (9sin(xy))}{\delta y} i ][/tex]
[tex]\Delta f(x,y) = [9y cos (x,y) i + 9xcos (x,y) j][/tex]
At [tex](0,8 )[/tex]
[tex]\Delta f (0,8) = [9(8) cos(0* 8)i + 9(8) sin(0* 8)j ][/tex]
[tex]\Delta f (0,8) = 72 i [/tex]