Respuesta :

Answer:

The magnitude is  [tex]\Delta f(0,8)  =  72[/tex]

The  direction  is  [tex]i[/tex] i.e toward the x-axis

Step-by-step explanation:

From the question we are told that

   The function is  [tex]f(x, y) = 9sin(xy) \ \ \[/tex]

    The point considered is  [tex](0,8 )[/tex]

Generally the maximum rate of change of f at the given point and the direction is mathematically represented as

            [tex]\Delta f(x,y) =  [\frac{\delta  f(x,y)}{\delta x } i + \frac{\delta  f(x,y)}{\delta y } j  ][/tex]

             [tex]\Delta f(x,y) =  [\frac{\delta  (9sin(xy))}{\delta x} i  + \frac{\delta  (9sin(xy))}{\delta y} i   ][/tex]

            [tex]\Delta f(x,y) = [9y cos (x,y) i +  9xcos (x,y) j][/tex]

At  [tex](0,8 )[/tex]

            [tex]\Delta  f (0,8) =  [9(8) cos(0* 8)i  + 9(8) sin(0* 8)j  ][/tex]

            [tex]\Delta  f (0,8) = 72 i [/tex]

RELAXING NOICE
Relax