Answer:
P ([tex]\hat p[/tex] ≤ 0.10)
Step-by-step explanation:
The probability in terms of statistics for this given problem can be written as follows.
Let consider X to the random variable that represents the number of 6's in 7 throws of a dice, then:
X [tex]\sim[/tex]Bin ( n = 72, p = 0.167)
E(X) = np
E(X) = 72× 0.167
E(X) = 12.024
E(X) [tex]\simeq[/tex] 12
p+q =1
q = 1 - p
q = 1 - 0.167
q = 0.833
V(X) = npq
V(X) = 72 × 0.167 × 0.833
V(X) = 10.02
V(X) [tex]\simeq[/tex] 10
∴ X [tex]\sim[/tex] N ([tex]\mu = 12, \sigma^2 =10[/tex])
⇒ [tex]\hat p = \dfrac{X}{n} \sim N ( p, \dfrac{pq}{n})[/tex]
where p = 0.167 and [tex]\dfrac{pq}{n}[/tex] = [tex]\dfrac{0.167 \times 0.833}{72}[/tex] = 0.00193
∴ P(at most 10% of rolls are 6's)
i.e
P ([tex]\hat p[/tex] ≤ 0.10)