Answer:
E = k λ₀ / x₀, the field is in thenegative direction of the x axis (-x)
Explanation:
In this problem the electric field of a line of charge is requested, the expression for the electric field is
E = k ∫ dq / r²
where k is the Coulomb constant that you are worth 9 10⁹ N m²/C², that the charge and r the distance to the point of interest, in this case it is the origin (x = 0)
let's use the definite linear density
λ₀ = dq / dx
dq = λ₀ dx
we replace and integrate
E = k λ₀ ∫ dx / x²
E = k λ₀ ( -1 / x)
we evaluate the integral from the lower limit of load x = x₀ to the upper limit x = ∞
E = - k λ₀ (1 /∞ - 1 / x₀)
E = k λ₀ / x₀
as the field is positive the direction is away from the charges, so it is in the negative direction of the x axis (-x)