Respuesta :

Answer:

The  points are

        [tex]t_1 =  0.7433[/tex]

        [tex]t_2 = -0.299[/tex]

Step-by-step explanation:

From the question we are told that

   The  first equation is  [tex]x(t) = 3t^3 -2t^2-2t -4[/tex]

     The second equation is  [tex]y(t) =  3t^2 -2t -2[/tex]

Now differentiating the first and second equation

        [tex]\frac{dx(t)}{dt} =  9t^2 -4t-2[/tex]

and

      [tex]\frac{dy(t)}{dt} =  6t-2[/tex]

Now

     [tex]\frac{dy(t)}{dx(t)}  =  \frac{\frac{dy(t)}{dt} }{\frac{dx(t)}{dt} } = \frac{9t^2 -4t-2}{6t-2}[/tex]

at critical point

     [tex]\frac{dy(t)}{dx(t)}  = 0[/tex]

=>   \frac{9t^2 -4t-2}{6t-2}=0[/tex]

=>   [tex]9t^2 - 4t-2 = 0[/tex]

solving using quadratic formula we have that

     [tex]t_1 =  0.7433[/tex]

and [tex]t_2 = -0.299[/tex]

RELAXING NOICE
Relax