Answer:
The points are
[tex]t_1 = 0.7433[/tex]
[tex]t_2 = -0.299[/tex]
Step-by-step explanation:
From the question we are told that
The first equation is [tex]x(t) = 3t^3 -2t^2-2t -4[/tex]
The second equation is [tex]y(t) = 3t^2 -2t -2[/tex]
Now differentiating the first and second equation
[tex]\frac{dx(t)}{dt} = 9t^2 -4t-2[/tex]
and
[tex]\frac{dy(t)}{dt} = 6t-2[/tex]
Now
[tex]\frac{dy(t)}{dx(t)} = \frac{\frac{dy(t)}{dt} }{\frac{dx(t)}{dt} } = \frac{9t^2 -4t-2}{6t-2}[/tex]
at critical point
[tex]\frac{dy(t)}{dx(t)} = 0[/tex]
=> \frac{9t^2 -4t-2}{6t-2}=0[/tex]
=> [tex]9t^2 - 4t-2 = 0[/tex]
solving using quadratic formula we have that
[tex]t_1 = 0.7433[/tex]
and [tex]t_2 = -0.299[/tex]