Respuesta :
Answer:
1) V = 12 π ㏑ 3
2) [tex]\mathbf{V = \dfrac{328 \pi}{9}}[/tex]
Step-by-step explanation:
Given that:
the graphs of the equations about each given line is:
[tex]y = \dfrac{6}{x^2}, y =0 , x=1 , x=3[/tex]
Using Shell method to determine the required volume,
where;
shell radius = x; &
height of the shell = [tex]\dfrac{6}{x^2}[/tex]
∴
Volume V = [tex]\int ^b_{x-1} \ 2 \pi ( x) ( \dfrac{6}{x^2}) \ dx[/tex]
[tex]V = \int ^3_{x-1} \ 2 \pi ( x) ( \dfrac{6}{x^2}) \ dx[/tex]
[tex]V = 12 \pi \int ^3_{x-1} \dfrac{1}{x} \ dx[/tex]
[tex]V = 12 \pi ( In \ x ) ^3_{x-1}[/tex]
V = 12 π ( ㏑ 3 - ㏑ 1)
V = 12 π ( ㏑ 3 - 0)
V = 12 π ㏑ 3
2) Find the line y=6
Using the disk method here;
where,
Inner radius [tex]r(x) = 6 - \dfrac{6}{x^2}[/tex]
outer radius R(x) = 6
Thus, the volume of the solid is as follows:
[tex]V = \int ^3_{x-1} \begin {bmatrix} \pi (6)^2 - \pi ( 6 - \dfrac{6}{x^2})^2 \end {bmatrix} \ dx[/tex]
[tex]V = \pi (6)^2 \int ^3_{x-1} \begin {bmatrix} 1 - \pi ( 1 - \dfrac{1}{x^2})^2 \end {bmatrix} \ dx[/tex]
[tex]V = 36 \pi \int ^3_{x-1} \begin {bmatrix} 1 - ( 1 + \dfrac{1}{x^4}- \dfrac{2}{x^2}) \end {bmatrix} \ dx[/tex]
[tex]V = 36 \pi \int ^3_{x-1} \begin {bmatrix} - \dfrac{1}{x^4}+ \dfrac{2}{x^2} \end {bmatrix} \ dx[/tex]
[tex]V = 36 \pi \int ^3_{x-1} \begin {bmatrix} {-x^{-4}}+ 2x^{-2} \end {bmatrix} \ dx[/tex]
Recall that:
[tex]\int x^n dx = \dfrac{x^n +1}{n+1}[/tex]
Then:
[tex]V = 36 \pi ( -\dfrac{x^{-3}}{-3}+ \dfrac{2x^{-1}}{-1})^3_{x-1}[/tex]
[tex]V = 36 \pi ( \dfrac{1}{3x^3}- \dfrac{2}{x})^3_{x-1}[/tex]
[tex]V = 36 \pi \begin {bmatrix} ( \dfrac{1}{3(3)^3}- \dfrac{2}{3}) - ( \dfrac{1}{3(1)^3}- \dfrac{2}{1}) \end {bmatrix}[/tex]
[tex]V = 36 \pi (\dfrac{82}{81})[/tex]
[tex]\mathbf{V = \dfrac{328 \pi}{9}}[/tex]
The graph of equation for 1 and 2 is also attached in the file below.

