Respuesta :
Answer:
It means [tex]\sum_{n=1}^\inf} = \frac{7n^2-4n+3}{12+2n^6}[/tex] also converges.
Step-by-step explanation:
The actual Series is::
[tex]\sum_{n=1}^\inf} = \frac{7n^2-4n+3}{12+2n^6}[/tex]
The method we are going to use is comparison method:
According to comparison method, we have:
[tex]\sum_{n=1}^{inf}a_n\ \ \ \ \ \ \ \ \sum_{n=1}^{inf}b_n[/tex]
If series one converges, the second converges and if second diverges series, one diverges
Now Simplify the given series:
Taking"n^2"common from numerator and "n^6"from denominator.
[tex]=\frac{n^2[7-\frac{4}{n}+\frac{3}{n^2}]}{n^6[\frac{12}{n^6}+2]} \\\\=\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{n^4[\frac{12}{n^6}+2]}[/tex]
[tex]\sum_{n=1}^{inf}a_n=\sum_{n=1}^{inf}\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\ \ \ \ \ \ \ \ \sum_{n=1}^{inf}b_n=\sum_{n=1}^{inf} \frac{1}{n^4}[/tex]
Now:
[tex]\sum_{n=1}^{inf}a_n=\sum_{n=1}^{inf}\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\\ \\\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\\=\frac{7-\frac{4}{inf}+\frac{3}{inf}}{\frac{12}{inf}+2}\\\\=\frac{7}{2}[/tex]
So a_n is finite, so it converges.
Similarly b_n converges according to p-test.
P-test:
General form:
[tex]\sum_{n=1}^{inf}\frac{1}{n^p}[/tex]
if p>1 then series converges. In oue case we have:
[tex]\sum_{n=1}^{inf}b_n=\frac{1}{n^4}[/tex]
p=4 >1, so b_n also converges.
According to comparison test if both series converges, the final series also converges.
It means [tex]\sum_{n=1}^\inf} = \frac{7n^2-4n+3}{12+2n^6}[/tex] also converges.