Answer:
[tex]PQR = 20[/tex]
Step-by-step explanation:
Given
Bisector: QS
[tex]PQS = 5x[/tex]
[tex]RQS = 2x + 6[/tex]
Required
Determine PQR
Since PQR is bisected to PQS and RQS, we have that
[tex]PQS = RQS[/tex]
Substitute expressions for PQS and RQS
[tex]5x = 2x + 6[/tex]
Collect Like Terms
[tex]5x - 2x = 6[/tex]
[tex]3x = 6[/tex]
Divide both sides by 3
[tex]x = 2[/tex]
Solving for PQR;
[tex]PQR = PQS + RQS[/tex]
[tex]PQR = 5x + 2x + 6[/tex]
[tex]PQR = 7x + 6[/tex]
Substitute 2 for x
[tex]PQR = 7 * 2 + 6[/tex]
[tex]PQR = 14 + 6[/tex]
[tex]PQR = 20[/tex]