Respuesta :
Answer:
1) 1
2) (2,3)
3) x⁴
Step-by-step explanation:
1)
We have the expression:
[tex]7x+1[/tex]
The degree of an equation is the largest exponent of the equation.
We can rewrite our expression as:
[tex]=7x^1+1x^0[/tex]
1 is the largest exponent.
Thus, our degree is 1.
2)
We have the system of equations:
[tex]x+y=5\\3x-y=3[/tex]
To solve, we can use substitution.
From the first equation, subtract x from both sides:
[tex]y=5-x[/tex]
Substitute this into the second equation:
[tex]3x-(5-x)=3[/tex]
Simplify:
[tex]3x-5+x=3[/tex]
Add 5 to both sides:
[tex]3x+x=8[/tex]
Combine like terms:
[tex]4x=8[/tex]
Divide both sides by 4:
[tex]x=2[/tex]
So, x is 2.
Substitute this back into the first equation:
[tex]x+y=5[/tex]
Substitute x for 2:
[tex]2+y=5[/tex]
Subtract 2 from both sides:
[tex]y=3[/tex]
Our solution is (2,3)
3)
We have the expression:
[tex]\frac{x^4}{x^0}[/tex]
Anything to the zeroth power (except for 0) is 1. Assuming x is not 0:
[tex]=x^4/1\\=x^4[/tex]
And that's the simplest it can get.
Answer:
[tex]\Huge \boxed{\mathrm{1. \ 1}} \\ \\ \\ \Huge \boxed{\mathrm{2. \ (2,3)}} \\\\\\ \Huge \boxed{{3. \ x^4 }}[/tex]
Step-by-step explanation:
The degree is the largest exponent on the variable.
[tex]7x^1 + 1x^0[/tex]
The largest exponent on the variable is 1.
The degree is 1.
System of equations:
[tex]x+y=5 \\ \\ 3x-y=3[/tex]
Solving y for the first equation.
Subtracting x from both sides.
[tex]y=5-x[/tex]
Substitution method.
[tex]3x-(5-x)=3[/tex]
Distribute negative sign.
[tex]3x-5+x=3[/tex]
Combining like terms.
[tex]4x-5=3[/tex]
Adding 5 to both sides.
[tex]4x=8[/tex]
Dividing both sides by 4.
[tex]x=2[/tex]
Substitution method.
[tex]y=5-2 \\ \\ \\ y=3[/tex]
[tex]\displaystyle \frac{x^4 }{x^0 }[/tex]
Subtract exponents with same bases when dividing.
[tex]x^{4-0}[/tex]
[tex]x^4[/tex]
