Answer:
[tex]h'(2)=-7[/tex]
Step-by-step explanation:
So we have:
[tex]h(x)=f(x)g(x)[/tex]
Differentiate. Use the product rule:
[tex]h'(x)=f'(x)g(x)+f(x)g'(x)[/tex]
Substitute 2 for x:
[tex]h'(2)=f'(2)g(2)+f(2)g'(2)[/tex]
We know that f'(2) is 1, f(2) is 5, g(2) is 3, and g'(2) is -2. Make the appropriate substitutions:
[tex]h'(2)=(1)(3)+(5)(-2)[/tex]
Simplify:
[tex]h'(2)=3-10[/tex]
Subtract:
[tex]h'(2)=-7[/tex]