Answer:
The midpoint of CD is [tex](\frac{2+a}{2},\ \frac{7+b}{2})[/tex].
Step-by-step explanation:
Consider a line CD.
The point C is (2, 7).
Assume that the point D is, (a, b).
The formula to compute the midpoint is:
[tex](x,y)=(\frac{x_{1}+x_{2}}{2},\ \frac{y_{1}+y_{2}}{2})[/tex]
Compute the midpoint of CD as follows:
[tex](x,y)=(\frac{x_{1}+x_{2}}{2},\ \frac{y_{1}+y_{2}}{2})[/tex]
[tex]=(\frac{2+a}{2},\ \frac{7+b}{2})[/tex]
Thus, the midpoint of CD is [tex](\frac{2+a}{2},\ \frac{7+b}{2})[/tex].