Answer:
We can conclude that there is sufficient evidence to state that the companies claim is not false
Step-by-step explanation:
From the question we are told that
The population proportion is [tex]p = 0.35[/tex]
The level of significance is [tex]\alpha = 0.10[/tex]
The sample size is n = 50
Generally the sample proportion is mathematically represented as
[tex]\r p = \frac{16}{50 }[/tex]
[tex]\r p = 0.32[/tex]
The null hypothesis is [tex]H_o : p\ge 0.35[/tex]
The alternative hypothesis is [tex]H_a : p< 0.35[/tex]
Generally the standard error is evaluated as
[tex]SE = \sqrt{ \frac{0.35 (1- 0.35 )}{ \sqrt{50 } } }[/tex]
[tex]SE = 0.067[/tex]
So
The test statistics is evaluated as
[tex]t = \frac{\r p - p }{ SE }[/tex]
=> [tex]t = \frac{0.32 - 0.35 }{ 0.067 }[/tex]
=> [tex]t = -0.45[/tex]
The p-value is obtained from the z-table , the values is
[tex]P( Z < -0.45) = 0.32636[/tex]
From the calculation we see that
[tex]p-value > \alpha[/tex] so we fail to reject the null hypothesis
Hence we can conclude that there is sufficient evidence to state that the companies claim is not false