Respuesta :
Answer:
[tex]\mathbf{pZn ^{2+} =8.8569 }[/tex]
Explanation:
Using the approach of Henderson-HasselBalch equation, we have :
[tex]pH = pKa[NH^+_4] + log \dfrac{[NH_3]}{[NH_4^+]}[/tex]
where;
the pKa of [tex]NH^+_4[/tex] = 9.26
concentration of [tex]NH_3[/tex] = 0.100 M
concentration of [tex]NH_4Cl[/tex] = 0.176 M
∴
the pH of the buffered solution is :
[tex]pH = 9.26 + log \dfrac{[0.100]}{[0.176]}[/tex]
[tex]pH = 9.26 + log (0.5682)[/tex]
[tex]pH = 9.26 +(-0.2455)[/tex]
[tex]pH =9.02[/tex]
The Chemical equation for the reaction of [tex]Zn ^{2+}[/tex] and EDTA is :
[tex]Zn^{2+}_{(aq)} + Y^{4-}_{(aq)} \iff ZnY^{2-} _{(aq)}[/tex]
Here;
[tex]Y^{4-}_{(aq)}[/tex] denotes the fully deprotonated form of the EDTA
The formation constant [tex]K_f[/tex] of the equation for the reaction can be represented as:
[tex]K_f = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ][Y^{4-}]}[/tex] ----- (1)
The logarithm of the formation constant of Zn - EDTA complex = 16.5
[tex]K_f[/tex] = [tex]10^{16.5}[/tex]
[tex]K_f[/tex] = [tex]3.16 \times 10^{16}[/tex]
Since the formation constant in the above equation signifies that the EDTA is present in [tex]Y^{4-}[/tex],
Then:
[tex]\alpha _{Y^{4-} }= \dfrac{Y^{4-}}{C_{EDTA}}[/tex]
[tex]{Y^{4-}}= \alpha_ {Y^{4-}} \times {C_{EDTA}}[/tex]
From (1)
[tex]K_f = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ][Y^{4-}]}[/tex]
[tex]K_f = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ \ \alpha_ {Y^{4-}} \times {C_{EDTA}}}[/tex]
∴
[tex]K_f' = K_f \times \alpha _Y{^4-} = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }[/tex]
where;
[tex]K_f'[/tex] = conditional formation constant
[tex]\alpha _Y{^4-}[/tex] = the fraction of EDTA that exit in the form of the presences of the 4 charges .
So at equivalence point :
all the [tex]Zn^{2+}[/tex] initially in titrand is now present in [tex]ZnY^{2-}[/tex]
[tex]K_f' = K_f \times \alpha _Y{^4-}[/tex]
Obtaining the data for the value of [tex]\alpha _Y{^4-}[/tex] at the reference table:
[tex]\alpha _Y{^4-}[/tex] = [tex]5.4 \times 10^{-12}[/tex]
∴
[tex]K_f' = 3.16 \times 10^{16} \times 5.4 \times 10^{-2}[/tex]
[tex]K_f' = 1.7064 \times 10^{15}[/tex]
To calculate the moles of EDTA ,[tex]Zn^{2+}[/tex] , [tex]ZnY^{2-}[/tex] ; we have:
moles of EDTA = 0.0100 M × 0.025 L
moles of EDTA = [tex]2.5 \times 10^{-4} \ mole[/tex]
moles of [tex]Zn^{2+}[/tex] = 0.00500 M × 0.050 L
moles of [tex]Zn^{2+}[/tex] = [tex]2.5 \times 10^{-4} \ mole[/tex]
moles of [tex]ZnY^{2-}[/tex] = [tex]\dfrac{initial \ mole}{total \ volume}[/tex]
moles of [tex]ZnY^{2-}[/tex] = [tex]\dfrac{2.5 \times 10^{-4}}{ 0.025 + 0.050 }[/tex]
moles of [tex]ZnY^{2-}[/tex] = [tex]\dfrac{2.5 \times 10^{-4}}{ 0.075 }[/tex]
moles of [tex]ZnY^{2-}[/tex] = 0.0033333 M
Recall that:
[tex]K_f' = K_f \times \alpha _Y{^4-} = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }[/tex]
[tex]K_f' = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }[/tex]
Assume Q² is the amount of complex dissociated in [tex]ZnY^{2-}[/tex]
[tex]ZnY^{2-} \iff Zn^{2+} + C_{EDTA}[/tex]
i.e [tex]Q^2 = Zn^{2+} + C_{EDTA}[/tex]
[tex]1.707 \times 10^{15}= \dfrac{0.0033333}{Q}[/tex]
[tex]Q= \dfrac{0.0033333}{1.707 \times 10^{15}}[/tex]
[tex]Q^2= \dfrac{0.0033333}{1.707 \times 10^{15}}[/tex]
[tex]Q^2= 1.9527 \times 10^{-18}[/tex]
[tex]Q= \sqrt{1.9527 \times 10^{-18}}[/tex]
Q = [tex]1.397 \times 10^{-9}[/tex] M
[tex][Zn^{2+}]= 1.39 \times 10^{-9} \ M[/tex]
∴
[tex]pZn ^{2+} =- log [Zn^{2+}][/tex]
[tex]pZn ^{2+} = - log (1.39 \times 10^{-9} ) \ M[/tex]
[tex]\mathbf{pZn ^{2+} =8.8569 }[/tex]