Calculate the pZn of a solution prepared by mixing 25.0 mL of 0.0100 M EDTA with 50.0 mL of 0.00500 M Zn2 . Assume that both the Zn2 and EDTA solutions are buffered with 0.100 M NH3 and 0.176 M NH4Cl.

Respuesta :

Answer:

[tex]\mathbf{pZn ^{2+} =8.8569 }[/tex]

Explanation:

Using the approach of Henderson-HasselBalch equation, we have :

[tex]pH = pKa[NH^+_4] + log \dfrac{[NH_3]}{[NH_4^+]}[/tex]

where;

the pKa of [tex]NH^+_4[/tex] = 9.26

concentration of [tex]NH_3[/tex] = 0.100 M

concentration of [tex]NH_4Cl[/tex] = 0.176 M

the pH of the buffered solution is :

[tex]pH = 9.26 + log \dfrac{[0.100]}{[0.176]}[/tex]

[tex]pH = 9.26 + log (0.5682)[/tex]

[tex]pH = 9.26 +(-0.2455)[/tex]

[tex]pH =9.02[/tex]

The Chemical equation for the reaction of [tex]Zn ^{2+}[/tex] and EDTA is :

[tex]Zn^{2+}_{(aq)} + Y^{4-}_{(aq)} \iff ZnY^{2-} _{(aq)}[/tex]

Here;

[tex]Y^{4-}_{(aq)}[/tex] denotes the fully deprotonated form of the EDTA

The formation constant [tex]K_f[/tex] of the equation for the reaction can be represented as:

[tex]K_f = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ][Y^{4-}]}[/tex]      ----- (1)

The logarithm of the formation constant of Zn - EDTA complex = 16.5

[tex]K_f[/tex]  = [tex]10^{16.5}[/tex]

[tex]K_f[/tex]  = [tex]3.16 \times 10^{16}[/tex]

Since the formation constant in the above equation signifies that the EDTA is present in  [tex]Y^{4-}[/tex],

Then:

[tex]\alpha _{Y^{4-} }= \dfrac{Y^{4-}}{C_{EDTA}}[/tex]

[tex]{Y^{4-}}= \alpha_ {Y^{4-}} \times {C_{EDTA}}[/tex]

From (1)

[tex]K_f = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ][Y^{4-}]}[/tex]  

[tex]K_f = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ \ \alpha_ {Y^{4-}} \times {C_{EDTA}}}[/tex]

[tex]K_f' = K_f \times \alpha _Y{^4-} = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }[/tex]

where;

[tex]K_f'[/tex] = conditional formation constant

[tex]\alpha _Y{^4-}[/tex] = the fraction of EDTA that exit in the form of the presences of the 4 charges .

So at equivalence point :

all the [tex]Zn^{2+}[/tex] initially in titrand  is now present in [tex]ZnY^{2-}[/tex]

[tex]K_f' = K_f \times \alpha _Y{^4-}[/tex]

Obtaining the data for the value of [tex]\alpha _Y{^4-}[/tex] at the reference table:

[tex]\alpha _Y{^4-}[/tex]  =  [tex]5.4 \times 10^{-12}[/tex]

[tex]K_f' = 3.16 \times 10^{16} \times 5.4 \times 10^{-2}[/tex]

[tex]K_f' = 1.7064 \times 10^{15}[/tex]

To calculate the moles of  EDTA ,[tex]Zn^{2+}[/tex]  , [tex]ZnY^{2-}[/tex] ; we have:

moles of  EDTA = 0.0100 M × 0.025 L

moles of  EDTA = [tex]2.5 \times 10^{-4} \ mole[/tex]

moles of [tex]Zn^{2+}[/tex] = 0.00500 M  × 0.050 L

moles of [tex]Zn^{2+}[/tex] = [tex]2.5 \times 10^{-4} \ mole[/tex]

moles of  [tex]ZnY^{2-}[/tex]  =  [tex]\dfrac{initial \ mole}{total \ volume}[/tex]

moles of  [tex]ZnY^{2-}[/tex]  = [tex]\dfrac{2.5 \times 10^{-4}}{ 0.025 + 0.050 }[/tex]

moles of  [tex]ZnY^{2-}[/tex]  = [tex]\dfrac{2.5 \times 10^{-4}}{ 0.075 }[/tex]

moles of  [tex]ZnY^{2-}[/tex]  = 0.0033333 M

Recall that:

[tex]K_f' = K_f \times \alpha _Y{^4-} = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }[/tex]

[tex]K_f' = \dfrac{[ZnY^{2-}]}{[Zn^{2+} ] \ C_{EDTA} }[/tex]

Assume Q² is the amount of complex dissociated in [tex]ZnY^{2-}[/tex]

[tex]ZnY^{2-} \iff Zn^{2+} + C_{EDTA}[/tex]  

i.e [tex]Q^2 = Zn^{2+} + C_{EDTA}[/tex]

[tex]1.707 \times 10^{15}= \dfrac{0.0033333}{Q}[/tex]

[tex]Q= \dfrac{0.0033333}{1.707 \times 10^{15}}[/tex]

[tex]Q^2= \dfrac{0.0033333}{1.707 \times 10^{15}}[/tex]

[tex]Q^2= 1.9527 \times 10^{-18}[/tex]

[tex]Q= \sqrt{1.9527 \times 10^{-18}}[/tex]

Q = [tex]1.397 \times 10^{-9}[/tex] M

[tex][Zn^{2+}]= 1.39 \times 10^{-9} \ M[/tex]

[tex]pZn ^{2+} =- log [Zn^{2+}][/tex]

[tex]pZn ^{2+} = - log (1.39 \times 10^{-9} ) \ M[/tex]

[tex]\mathbf{pZn ^{2+} =8.8569 }[/tex]