Answer:
The series converges to [tex]$ \frac{1}{1-9x} $[/tex] for [tex]$ \frac{-1}{9} < x < \frac{1}{9} $[/tex]
Step-by-step explanation:
Given the series is [tex]$ \sum_{n=0}^{\infty} 9^n x^n $[/tex]
We have to find the values of x for which the series converges.
We know,
[tex]$ \sum_{n=0}^{\infty} ar^{n-1} $[/tex] converges to (a) / (1-r) if r < 1
Otherwise the series will diverge.
Here, [tex]$ \sum_{n=0}^{\infty} 9^n x^n = \sum_{n=0}^{\infty} (9x)^{n} $[/tex] is a geometric series with |r| = | 9x |
And it converges for |9x| < 1
Hence, the given series gets converge for [tex]$ \frac{-1}{9} < x < \frac{1}{9} $[/tex]
And geometric series converges to [tex]$ \frac{a}{1-r} $[/tex]
Here, a = 1 and r = 9x
Therefore, [tex]$ \frac{a}{1-r} = \frac{1}{1-9x} $[/tex]
Hence, the given series converges to [tex]$ \frac{1}{1-9x} $[/tex] for [tex]$ \frac{-1}{9} < x < \frac{1}{9} $[/tex]