Find all values of x for which the series converges. (Enter your answer using interval notation.) [infinity] 9 x − 7 9 n n = 0 For these values of x, write the sum of the series as a function of x.

Respuesta :

Answer:

The series converges to   [tex]$ \frac{1}{1-9x} $[/tex]     for   [tex]$ \frac{-1}{9} < x < \frac{1}{9} $[/tex]                

Step-by-step explanation:

Given the series is     [tex]$ \sum_{n=0}^{\infty} 9^n x^n $[/tex]

We have to find the values of x for which the series converges.

We know,

[tex]$ \sum_{n=0}^{\infty} ar^{n-1} $[/tex] converges to  (a) / (1-r) if r < 1

Otherwise the series will diverge.

Here, [tex]$ \sum_{n=0}^{\infty} 9^n x^n = \sum_{n=0}^{\infty} (9x)^{n} $[/tex] is a geometric series with |r| = | 9x |

And it converges for |9x| < 1

Hence, the given series gets converge for [tex]$ \frac{-1}{9} < x < \frac{1}{9} $[/tex]

And geometric series converges to [tex]$ \frac{a}{1-r} $[/tex]

Here, a = 1 and r = 9x

Therefore, [tex]$ \frac{a}{1-r} = \frac{1}{1-9x} $[/tex]

Hence, the given series converges to   [tex]$ \frac{1}{1-9x} $[/tex]     for   [tex]$ \frac{-1}{9} < x < \frac{1}{9} $[/tex]

ACCESS MORE