Respuesta :

Answer:

The  standard score  [tex]z = 0.6[/tex]

The  the percentile   [tex]P(z < 0.6 ) = 72.57\%[/tex]

Step-by-step explanation:

From the question we are told that

   A data value is  0.6 standard deviations above the mean.

The above statement can be mathematically represented as

     [tex]x = 0.6 \sigma + \mu[/tex]

Where [tex]\sigma[/tex] is the standard deviation and  [tex]\mu[/tex] is the mean

   Generally the standard score is mathematically represented as

            [tex]z = \frac{x - \mu}{\sigma}[/tex]

   =>      [tex]z = \frac{(0.6 \sigma + \mu) - \mu}{\sigma}[/tex]

   =>     [tex]z = 0.6[/tex]

Now the percentile is obtained from the z-table , the value is  

        [tex]P(z < 0.6 ) = 0.7257[/tex]

=>    [tex]P(z < 0.6 ) = 72.57\%[/tex]