If lim f (x) x →5 = 2 and lim g (x) x → 5= -6 which of these limits exist?
![If lim f x x 5 2 and lim g x x 5 6 which of these limits exist class=](https://us-static.z-dn.net/files/d09/c3203de36802c96c5166416f345519a5.png)
Answer:
E
Step-by-step explanation:
So we already know that:
[tex]\lim_{x \to 5} f(x)=2 \text{ and } \lim_{x \to 5} g(x)=-6[/tex]
So, go through each of the choices and see which ones are correct.
I)
We have:
[tex]\lim_{x \to 5} (f(x)+g(x))[/tex]
This is the same as saying:
[tex]\lim_{x \to 5} f(x)+ \lim_{x \to 5} g(x)[/tex]
And since we already know the values:
[tex]=(2)+(-6)\\=-4[/tex]
So, the limit does indeed exist.
II)
We have:
[tex]\lim_{x \to 5} \frac{f(x)}{g(x)+6}[/tex]
This is the same as:
[tex]\frac{ \lim_{x \to 5} f(x)}{ \lim_{x \to 5} g(x)+ \lim_{x \to 5} 6 }[/tex]
The bottom right one is just 6. Simplify:
[tex]\frac{ \lim_{x \to 5} f(x)}{ \lim_{x \to 5} g(x)+6}[/tex]
Substitute the values we know:
[tex]=\frac{(2)}{(-6)+6} \\=2/0[/tex]
This is a value over zero. Unlike the indeterminate form 0/0, this limit does not exist.
III)
We have:
[tex]\lim_{x \to 5} \frac{f(x)-2}{g(x)}[/tex]
Again, this is the same as:
[tex]\frac{ (\lim_{x \to 5} f(x))-2}{ \lim_{x \to 5} g(x)}[/tex]
Substitute in the values we know:
[tex]=\frac{(2)-2}{(-6)}\\ =0/-6=0[/tex]
The limit does exist and it is 0.
So, the limits of only I and III exist.
The correct answer is E.