Respuesta :

Answer:

E

Step-by-step explanation:

So we already know that:

[tex]\lim_{x \to 5} f(x)=2 \text{ and } \lim_{x \to 5} g(x)=-6[/tex]

So, go through each of the choices and see which ones are correct.

I)

We have:

[tex]\lim_{x \to 5} (f(x)+g(x))[/tex]

This is the same as saying:

[tex]\lim_{x \to 5} f(x)+ \lim_{x \to 5} g(x)[/tex]

And since we already know the values:

[tex]=(2)+(-6)\\=-4[/tex]

So, the limit does indeed exist.

II)

We have:

[tex]\lim_{x \to 5} \frac{f(x)}{g(x)+6}[/tex]

This is the same as:

[tex]\frac{ \lim_{x \to 5} f(x)}{ \lim_{x \to 5} g(x)+ \lim_{x \to 5} 6 }[/tex]

The bottom right one is just 6. Simplify:

[tex]\frac{ \lim_{x \to 5} f(x)}{ \lim_{x \to 5} g(x)+6}[/tex]

Substitute the values we know:

[tex]=\frac{(2)}{(-6)+6} \\=2/0[/tex]

This is a value over zero. Unlike the indeterminate form 0/0, this limit does not exist.

III)

We have:

[tex]\lim_{x \to 5} \frac{f(x)-2}{g(x)}[/tex]

Again, this is the same as:

[tex]\frac{ (\lim_{x \to 5} f(x))-2}{ \lim_{x \to 5} g(x)}[/tex]

Substitute in the values we know:

[tex]=\frac{(2)-2}{(-6)}\\ =0/-6=0[/tex]

The limit does exist and it is 0.

So, the limits of only I and III exist.

The correct answer is E.

ACCESS MORE