Respuesta :
Answer:
25.0000 + -37.5000 + 66.6667 + -63.5416 + 66.6667
Step-by-step explanation:
The actual formatting of the question has been attached to this response.
From the question,
Let the sequence of terms be [tex]b_{n}[/tex] i.e
[tex]b_{n}[/tex] = [tex]\frac{(-5)^{n+1} }{n!}[/tex]
Let the sequence of partial sums be [tex]S_{n}[/tex] i.e
[tex]S_{n}[/tex] = s₁ + s₂ + s₃ + . . . + sₙ
Therefore the first five terms of the sequence of partial sums will be S₅ i.e
S₅ = s₁ + s₂ + s₃ + s₄ + s₅
Where;
s₁ = b₁
s₂ = b₁ + b₂ = s₁ + b₂
s₃ = b₁ + b₂ + b₃ = s₂ + b₃
s₄ = b₁ + b₂ + b₃ + b₄ = s₃ + b₄
s₅ = b₁ + b₂ + b₃ + b₄ + b₅ = s₄ + b₅
Where;
b₁ can be found by substituting n = 1 into equation (i) as follows;
[tex]b_{1}[/tex] = [tex]\frac{(-5)^{1+1} }{1!}[/tex]
[tex]b_{1}[/tex] = 25
[tex]b_{1}[/tex] = 25.0000
Recall that
s₁ = b₁
∴ s₁ = 25.0000 to 4 decimal places
--------------------------------------------------------------------------
b₂ can be found by substituting n = 2 into equation (i) as follows;
[tex]b_{2}[/tex] = [tex]\frac{(-5)^{2+1} }{2!}[/tex]
[tex]b_{2}[/tex] = -62.5
[tex]b_{2}[/tex] = -62.5000
Recall that
s₂ = s₁ + b₂
∴ s₂ = 25.000 + -62.5000 = -37.5000
-----------------------------------------------------------------------------------------
b₃ can be found by substituting n = 3 into equation (i) as follows;
[tex]b_{3}[/tex] = [tex]\frac{(-5)^{3+1} }{3!}[/tex]
[tex]b_{3}[/tex] = 104.1667
Recall that
s₃ = s₂ + b₃
∴ s₃ = -37.5000 + 104.1667 = 66.6667
--------------------------------------------------------------------------------
b₄ can be found by substituting n = 4 into equation (i) as follows;
[tex]b_{4}[/tex] = [tex]\frac{(-5)^{4+1} }{4!}[/tex]
[tex]b_{4}[/tex] = -130.2083
Recall that
s₄ = s₃ + b₄
∴ s₄ = 66.6667 + -130.2083 = -63.5416
-------------------------------------------------------------------------
b₅ can be found by substituting n = 5 into equation (i) as follows;
[tex]b_{5}[/tex] = [tex]\frac{(-5)^{5+1} }{5!}[/tex]
[tex]b_{5}[/tex] = 130.2083
Recall that
s₅ = s₄ + b₅
∴ s₅ = -63.5416 + 130.2083 = 66.6667
------------------------------------------------------------------------------
Therefore, the first five terms of the partial sum is:
25.0000 + -37.5000 + 66.6667 + -63.5416 + 66.6667
![Ver imagen stigawithfun](https://us-static.z-dn.net/files/d23/53923867f9a703cc1114230f654429f9.png)