Respuesta :

Answer:

25.0000 + -37.5000 + 66.6667 + -63.5416 + 66.6667

Step-by-step explanation:

The actual formatting of the question has been attached to this response.

From the question,

Let the sequence of terms be [tex]b_{n}[/tex] i.e

[tex]b_{n}[/tex] = [tex]\frac{(-5)^{n+1} }{n!}[/tex]

Let the sequence of partial sums be [tex]S_{n}[/tex] i.e

[tex]S_{n}[/tex] = s₁ + s₂ + s₃ + . . . + sₙ

Therefore the first five terms of the sequence of partial sums will be S₅ i.e

S₅ =  s₁ + s₂ + s₃ + s₄ + s₅

Where;

s₁ = b₁

s₂ = b₁ + b₂ = s₁ + b₂

s₃ = b₁ + b₂ + b₃ = s₂ + b₃

s₄ = b₁ + b₂ + b₃ + b₄ = s₃ + b₄

s₅ = b₁ + b₂ + b₃ + b₄ + b₅ = s₄ + b₅

Where;

b₁ can be found by substituting n = 1 into equation (i) as follows;

[tex]b_{1}[/tex] = [tex]\frac{(-5)^{1+1} }{1!}[/tex]

[tex]b_{1}[/tex] = 25

[tex]b_{1}[/tex] = 25.0000

Recall that

s₁ = b₁

∴ s₁ = 25.0000 to 4 decimal places

--------------------------------------------------------------------------

b₂ can be found by substituting n = 2 into equation (i) as follows;

[tex]b_{2}[/tex] = [tex]\frac{(-5)^{2+1} }{2!}[/tex]

[tex]b_{2}[/tex] = -62.5

[tex]b_{2}[/tex] = -62.5000

Recall that

s₂ = s₁ + b₂

∴ s₂ = 25.000 + -62.5000 = -37.5000

-----------------------------------------------------------------------------------------

b₃ can be found by substituting n = 3 into equation (i) as follows;

[tex]b_{3}[/tex] = [tex]\frac{(-5)^{3+1} }{3!}[/tex]

[tex]b_{3}[/tex] = 104.1667

Recall that

s₃ = s₂ + b₃

∴ s₃ = -37.5000 + 104.1667 = 66.6667

--------------------------------------------------------------------------------

b₄ can be found by substituting n = 4 into equation (i) as follows;

[tex]b_{4}[/tex] = [tex]\frac{(-5)^{4+1} }{4!}[/tex]

[tex]b_{4}[/tex] = -130.2083

Recall that

s₄ =  s₃ + b₄

∴ s₄ = 66.6667 + -130.2083 = -63.5416

-------------------------------------------------------------------------

b₅ can be found by substituting n = 5 into equation (i) as follows;

[tex]b_{5}[/tex] = [tex]\frac{(-5)^{5+1} }{5!}[/tex]

[tex]b_{5}[/tex] = 130.2083

Recall that

s₅ = s₄ + b₅

∴ s₅ = -63.5416 + 130.2083 = 66.6667

------------------------------------------------------------------------------

Therefore, the first five terms of the partial sum is:

25.0000 + -37.5000 + 66.6667 + -63.5416 + 66.6667

Ver imagen stigawithfun
ACCESS MORE