Answer:
0.5 g/L.
Explanation:
Hello,
In this case, for this solubility problem, we can write for the lead (II) fluoride:
[tex]PbF_2(s)\rightleftharpoons Pb^{2+}(aq)+2F^-(aq)[/tex]
And the equilibrium expression is:
[tex]Ksp=[Pb^{2+}][F^-]^2[/tex]
Whereas Ksp of lead (II) fluoride is 3.3x10⁻⁸. In such a way, we can write the equilibrium expression in terms of the molar solubility [tex]x[/tex] as follows:
[tex]Ksp=(x)(2x)^2=3.3x10^{-8}[/tex]
Hence, solving for [tex]x[/tex] we find:
[tex]x=\sqrt[3]{\frac{3.3x10^{-8}}{4} }\\\\x=2.02x10^{-3}M[/tex]
Moreover, since the molar mass of lead (II) fluoride is 245.2 g/mol, the solubility turns out:
[tex]2.02x10^{-3}\frac{molPbF_2}{L}*\frac{245.2gPbF_2}{1molPbF_2}\\ \\0.5\frac{g}{L}[/tex]
Best regards.