CRITICAL THINKING The weight y (in pounds) of a rainbow trout can be modeled by y = 0.000304x3, where x is the length (in inches) of the trout. a. Write a function that relates the weight y and length x of a rainbow trout when y is measured in kilograms and x is measured in centimeters. Use the fact that 1 kilogram ≈ 2.20 pounds and 1 centimeter ≈ 0.394 inch.

Respuesta :

Answer:

[tex]y = 0.01092395604x^3[/tex]

Step-by-step explanation:

Given:

[tex]y = 0.000304x^3[/tex]

Where y is in pounds and x is in inches

Required

Represent y in kilogram and x in centimetre

[tex]y = 0.000304x^3[/tex]

The expression can be rewritten as

[tex](y\ pound) = 0.000304(x\ inch)^3[/tex]

------------------------------------------------------------------------------------------------

If [tex]0.394\ inch= 1\ cm[/tex]

Divide both by 0.394

[tex]\frac{0.394\ inch}{0.394}= \frac{1\ cm}{0.394}[/tex]

[tex]1\ inch= \frac{1\ cm}{0.394}[/tex]

[tex]1\ inch = 2.538\ cm[/tex] (Approximated)

Multiply both sides by x

[tex]x * 1\ inch = 2.538\ cm * x[/tex]

[tex]x \ inch = 2.538x\ cm[/tex]

------------------------------------------------------------------------------------------------

If [tex]2.20\ pound = 1\ kg[/tex]

Divide both by 2.20

[tex]\frac{2.20\ pound}{2.20} = \frac{1\ kg}{2.20}[/tex]

[tex]1\ pound = \frac{1\ kg}{2.20}[/tex]

[tex]1\ pound = 0.455\ kg[/tex] (Approximated)

Multiply both sides by y

[tex]y * 1\ pound = 0.454\ kg * y[/tex]

[tex]y \ pound = 0.454y\ kg[/tex]

------------------------------------------------------------------------------------------------

Substitute 0.455y kg for y pound and 2.538x cm for x inch in [tex](y\ pound) = 0.000304(x\ inch)^3[/tex]

[tex]0.454y = 0.000304(2.538x)^3[/tex]

[tex]0.454y = 0.000304(16.35x^3)[/tex]  Approximated

[tex]0.454y = 0.0049704x^3[/tex]

Divide both sides by 0.455

[tex]\frac{0.455y}{0.455} = \frac{0.0049704x^3}{0.455}[/tex]

[tex]y = \frac{0.0049704x^3}{0.455}[/tex]

[tex]y = 0.01092395604x^3[/tex]

ACCESS MORE