Answer:
Step-by-step explanation:
[tex] \sf{ \frac{1}{2} (x - 3) = 9}[/tex]
Distribute 1/2 through the parentheses
⇒[tex] \sf{ \frac{1}{2} x - \frac{1}{2} \times 3 = 9}[/tex]
Multiply the fractions
⇒[tex] \sf{ \frac{1}{2} x - \frac{1 \times 3}{2 \times 1} = 9}[/tex]
⇒[tex] \sf{ \frac{1}{2} x - \frac{3}{2} = 9}[/tex]
While performing the addition or subtraction of like fractions, you just have to add or subtract the numerator respectively in which the denominator is retained same.
⇒[tex] \sf{ \frac{x - 3}{2} = 9}[/tex]
Apply cross product property
⇒[tex] \sf{x - 3 = 9 \times 2}[/tex]
Multiply the numbers
⇒[tex] \sf{x - 3 = 18}[/tex]
Move 3 to right hand side and change it's sign
⇒[tex] \sf{x = 18 + 3}[/tex]
Add the numbers
⇒[tex] \sf{x = 21}[/tex]
Hope I helped!
Best regards!!