Respuesta :

Answer:

[tex] \boxed{ \bold{ \sf{ \boxed{x = 21}}}}[/tex]

Step-by-step explanation:

[tex] \sf{ \frac{1}{2} (x - 3) = 9}[/tex]

Distribute 1/2 through the parentheses

⇒[tex] \sf{ \frac{1}{2} x - \frac{1}{2} \times 3 = 9}[/tex]

Multiply the fractions

⇒[tex] \sf{ \frac{1}{2} x - \frac{1 \times 3}{2 \times 1} = 9}[/tex]

⇒[tex] \sf{ \frac{1}{2} x - \frac{3}{2} = 9}[/tex]

While performing the addition or subtraction of like fractions, you just have to add or subtract the numerator respectively in which the denominator is retained same.

⇒[tex] \sf{ \frac{x - 3}{2} = 9}[/tex]

Apply cross product property

⇒[tex] \sf{x - 3 = 9 \times 2}[/tex]

Multiply the numbers

⇒[tex] \sf{x - 3 = 18}[/tex]

Move 3 to right hand side and change it's sign

⇒[tex] \sf{x = 18 + 3}[/tex]

Add the numbers

⇒[tex] \sf{x = 21}[/tex]

Hope I helped!

Best regards!!

ACCESS MORE