The length of a rectangle is increasing at a rate of 9 cm/s and its width is increasing at a rate of 7 cm/s. When the length is 12 cm and the width is 5 cm, how fast is the area of the rectangle increasing?

Respuesta :

Answer:

129 [tex]cm^2/s[/tex]

Step-by-step explanation:

Increasing rate of length, [tex]\frac{dl}{dt}[/tex]= 9 cm/s

Increasing rate of width, [tex]\frac{dw}{dt}[/tex] = 7 cm/s

Length, l = 12 cm

Width, w = 5 cm

To find:

Rate of increase of area of rectangle at above given points.

Solution:

Formula for area of a rectangle is given as:

[tex]Area = Length \times Width[/tex]

OR

[tex]A = l \times w[/tex]

Differentiating w.r.to t:

[tex]\dfrac{d}{dt}A = \dfrac{d}{dt}(l \times w)\\\Rightarrow \dfrac{d}{dt}A = w \times \dfrac{d}{dt}l +l \times \dfrac{d}{dt}w[/tex]

Putting the values:

[tex]\Rightarrow \dfrac{dA}{dt} = 5 \times 9 + 12 \times 7\\\Rightarrow \dfrac{dA}{dt} = 45 + 84\\\Rightarrow \bold{\dfrac{dA}{dt} = 129\ cm^2/sec}[/tex]

ACCESS MORE