Complete Question
You look over the songs in a jukebox and determine that you like 18 of 59 songs.
(a) What is the probability that you like the next four songs that are played? (Assume a song cannot be repeated) Round to three decimal places as needed)
(b) What is the probability that you do not like the next four songs that are played? (Assume a song cannot be repeated.) Round to three decimal places as needed
Answer:
a
[tex]P = 0.0067[/tex]
b
[tex]Q = 0.222[/tex]
Step-by-step explanation:
From the question we are told that
The total number of songs is [tex]n = 59[/tex]
The number of songs you liked is [tex]k = 18[/tex]
The probability that you like the next four songs that are played? (Assume a song cannot be repeated) is mathematically represented as
[tex]P = \frac{ ^{k} C _4 }{ ^{n} C _4}[/tex]
=> [tex]P = \frac{ ^{18} C _4 }{ ^{59} C _4}[/tex]
Now using a combination calculator
[tex]P= \frac{ 3060}{ 455126}[/tex]
[tex]P = 0.0067[/tex]
The probability that you do not like the next four songs that are played? (Assume a song cannot be repeated.) is mathematically evaluated as
[tex]Q = \frac{ ^{n- k} C _4 }{ ^{n} C _4}[/tex]
=> [tex]Q = \frac{ ^{59- 18} C _4 }{ ^{n} C _4}[/tex]
=> [tex]Q = \frac{ ^{41} C _4 }{ ^{59} C _4}[/tex]
Now using a combination calculator
[tex]Q = \frac{ 101270}{ 455126}[/tex]
[tex]Q = 0.222[/tex]