Respuesta :
Answer:
[tex]\approx \bold{602\ m}[/tex]
Step-by-step explanation:
Given the following dimensions:
XY=966 m
[tex]\angle XYZ[/tex] = 38°24', and
[tex]\angle YZX[/tex] = 94°6'
To find:
Distance between points X and Z.
Solution:
Let us plot the given values.
We can clearly see that it forms a triangle when we join the points X to Y, Y to Z and Z to X.
The [tex]\triangle XYZ[/tex] has following dimensions:
XY=966 m
[tex]\angle XYZ[/tex] = 38°24', and
[tex]\angle YZX[/tex] = 94°6'
in which we have to find the side XZ.
Kindly refer to the image attached.
Let us use the Sine rule here:
As per Sine Rule:
[tex]\dfrac{a}{sinA} = \dfrac{b}{sinB} = \dfrac{c}{sinC}[/tex]
Where
a is the side opposite to [tex]\angle A[/tex]
b is the side opposite to [tex]\angle B[/tex]
c is the side opposite to [tex]\angle C[/tex]
[tex]\dfrac{XZ}{sin\angle Y} = \dfrac{XY}{sin\angle Z}\\\Rightarrow \dfrac{966}{sin94^\circ6'} = \dfrac{XZ}{sin38^\circ24'}\\\Rightarrow XZ=\dfrac{966}{sin94^\circ6'} \times sin38^\circ24'\\\Rightarrow XZ=\dfrac{966}{0.997} \times 0.621\\\Rightarrow XZ=601.69 \m \approx \bold{602\ m}[/tex]
![Ver imagen isyllus](https://us-static.z-dn.net/files/d12/1ed1ddbf484672cb21b251077bd9c59b.png)