Answer:
[tex]Length = \frac{64}{3}m[/tex]
[tex]Width= \frac{32}{3}m[/tex]
Step-by-step explanation:
Given
[tex]Perimeter = 64m[/tex]
[tex]Length = 2 * Width[/tex]
Required
Determine the length and the width
Since the alley is rectangular, the perimeter is as follows;
[tex]Perimeter = 2 (Length * Width)[/tex]
Substitute 64m for Perimeter
[tex]64m = 2(Length + Width)[/tex]
Substitute 2 * Width for Length
[tex]64m = 2(Width+ 2 * Width)[/tex]
[tex]64m = 2(Width+ 2 Width)[/tex]
[tex]64m = 2(3 Width)[/tex]
[tex]64m = 6Width[/tex]
Divide both sides by 6
[tex]Width= \frac{64m}{6}[/tex]
[tex]Width= \frac{32}{3}m[/tex]
Recall that
[tex]Length = 2 * Width[/tex]
[tex]Length = 2 * \frac{32}{3}m[/tex]
[tex]Length = \frac{64}{3}m[/tex]