Please solve this, will rate 5 stars and mark as STAR!
![Please solve this will rate 5 stars and mark as STAR class=](https://us-static.z-dn.net/files/d25/77c2d91eba4085b4be56f44f546099a3.jpg)
Answer:
[tex]\boxed{5 \cdot \sqrt{2} \cdot \sqrt[6]{5} }[/tex]
Step-by-step explanation:
[tex]\sqrt[3]{250} \cdot \sqrt{\sqrt[3]{10} }[/tex]
[tex]\sqrt{\sqrt[3]{10} } \implies (10^\frac{1}{3} )^\frac{1}{2} =10^\frac{1}{6} =\sqrt[6]{10}[/tex]
[tex]\therefore \sqrt{\sqrt[3]{10} }=\sqrt[6]{10}[/tex]
[tex]\text{Solving }\sqrt[3]{250} \cdot \sqrt{\sqrt[3]{10} }[/tex]
[tex]250=2 \cdot 5^3[/tex]
[tex]\sqrt[3]{250}=\sqrt[3]{2\cdot 5^3}=5 \sqrt[3]{2}[/tex]
Once
[tex]\sqrt[6]{2} \cdot \sqrt[6]{5} = \sqrt[6]{10}[/tex]
We have
[tex]5 \sqrt[3]{2} \cdot \sqrt[6]{2} \cdot \sqrt[6]{5}[/tex]
We can proceed considering the common base of exponentials
[tex]\sqrt[3]{2} \cdot \sqrt[6]{2} = 2^{\frac{1}{3}} \cdot 2^{\frac{1}{6} } = 2^{\frac{3}{6} } = 2^{\frac{1}{2} }=\sqrt{2}[/tex]
Therefore,
[tex]5 \sqrt[3]{2} \cdot \sqrt[6]{2} \cdot \sqrt[6]{5} = 5 \cdot \sqrt{2} \cdot \sqrt[6]{5}[/tex]