Respuesta :

Answer:

36[tex]\sqrt{3}[/tex] + 72

Step-by-step explanation:

The length of the rectangle = diameter of 2 circles = 4 × 3 = 12 mm

The width of the rectangle = 2 radii + distance d between radii ( lower to upper )

Using the right triangle formed by joining the 3 centres with legs 3 and d and hypotenuse 6

Using Pythagoras' identity, then

d² + 3² = 6²

d² + 9 = 36 ( subtract 9 from both sides )

d² = 27 ( take the square root of both sides )

d = [tex]\sqrt{27}[/tex] = 3[tex]\sqrt{3}[/tex]

Thus width of rectangle = 3 + 3[tex]\sqrt{3}[/tex] + 3 = 6 + 3[tex]\sqrt{3}[/tex]

Hence

area = length × width

        = 12 × (6 + 3[tex]\sqrt{3}[/tex] ) = 36[tex]\sqrt{3}[/tex] + 72 mm ²

36 [tex]\sqrt{3}[/tex]+ 72

The length of the rectangle = diameter of 2 circles = 4 × 3 = 12 mm

The width of the rectangle = 2 radii + distance d between radii ( lower to upper )

Using the right triangle formed by joining the 3 centres with legs 3 and d and hypotenuse 6

Using Pythagoras' identity, then

d² + 3² = 6²

d² + 9 = 36 ( subtract 9 from both sides )

d² = 27 ( take the square root of both sides )

d =  = 3

Thus width of rectangle = 3 + 3 + 3 = 6 + 3

Hence

area = length × width

       = 12 × (6 + 3 ) = 36 + 72 mm ²

ACCESS MORE