al3x45
contestada


[tex] \frac{x^{3} }{x^{2} + 2x + 1 } [/tex]
How do I divide a monomial by a polynomial? ​

Respuesta :

[tex]x^3=\boxed{x}\cdot x^2[/tex], and

[tex]\boxed{x}(x^2+2x+1)=x^3+2x^2+x[/tex]

Subtract this from [tex]x^3[/tex] to get a remainder of

[tex]x^3-(x^3+2x^2+x)=-2x^2-x[/tex]

[tex]-2x^2=\boxed{-2}\cdot x^2[/tex], and

[tex]\boxed{-2}(x^2+2x+1)=-2x^2-4x-2[/tex]

Subtract this from the previous remainder to get a new remainder of

[tex](-2x^2-x)-(-2x^2-4x-2)=3x+2[/tex]

[tex]3x[/tex] does not divide [tex]x^2[/tex], so we stop here.

What we've done is to write

[tex]\dfrac{x^3}{x^2+2x+1}=x-\dfrac{2x^2+x}{x^2+2x+1}[/tex]

then

[tex]\dfrac{x^3}{x^2+2x+1}=x-2+\dfrac{3x+2}{x^2+2x+1}[/tex]

and we stop here because the remainder term [tex](3x+2)[/tex] has a degree less than the degree of the denominator.

Alternatively, we can be a bit tricky and notice that

[tex]x^2+2x+1=(x+1)^2[/tex]

Now,

[tex](x+1)^3=x^3+3x^2+3x+1[/tex]

so that

[tex]\dfrac{x^3}{(x+1)^2}=\dfrac{(x+1)^3-(3x^2+3x+1)}{(x+1)^2}[/tex]

We can divide the first term by [tex](x+1)^2[/tex] easily to get

[tex]\dfrac{x^3}{(x+1)^2}=x+1-\dfrac{3x^2+3x+1}{(x+1)^2}[/tex]

Next,

[tex](x+1)^2=x^2+2x+1[/tex]

so that

[tex]\dfrac{x^3}{(x+1)^2}=x+1-\dfrac{3((x+1)^2-(2x+1))}{(x+1)^2}-\dfrac{3x+1}{(x+1)^2}[/tex]

[tex]\dfrac{x^3}{(x+1)^2}=x+1-3+\dfrac{6x+3}{(x+1)^2}-\dfrac{3x+1}{(x+1)^2}[/tex]

[tex]\dfrac{x^3}{(x+1)^2}=x-2+\dfrac{3x+2}{(x+1)^2}[/tex]

which is the same result as before.

ACCESS MORE