Answer:
[tex]\bold{x=\dfrac{a^2+ab}{a-b}}[/tex]
Step-by-step explanation:
[tex]\bold{a(x-b)=a^2+bx}\\\\\bold{ax-ab=a^2+bx}\\\\{}\ \ +ab\qquad+ab\\\\\bold{ax\ =\ a^2+bx+ab}\\\\ -bx\qquad-bx\\\\\bold{ax-bx=a^2+ab}\\\\\bold{(a-b)x\ =\ a^2+ab}\\\\\div(a-b)\quad\ \,\div(a-b)\\\\ \bold{x=\dfrac{a^2+ab}{a-b}}\qquad\qquad\qquad a\ne b[/tex]