A basketball player scored 33 points during a game by shooting 1-point free throws, 2-point field goals, and 3-point field goals. The player scored 17 times. She scored 3 more 2-point field goals than 1-point free throws. The system of equations below represents the situation, where x is the number of 1-point free throws, y is the number of 2-point field goals, and z is the number of 3-point field goals. x + y + z = 17 x + 2y + 3z = 33 y – x = 3

Respuesta :

Answer:

No. of 1 pt free throws = 5, No. of 2 pt goals = 8, No. of 3 pt goals = 4

Step-by-step explanation:

Equations : x + y + z = 17 [ Total times taken to score ]

1x + 2y + 3z = 33 [ Total Score ]

Also, y = x + 3

Putting the value of 'y' in both equations :

x + (x + 3)+ z = 17 → 2x + 3 + z = 17 → 2x + z = 14  (i)

1x + 2 (x + 3) + 3z = 33 →  x + 2x + 6 + 3z = 33 → 3x + 3z = 27 (ii)

Solving these equations :

From (i), z = 14 - 2x

Putting this value in (ii), 3x + 3(14 - 2x) = 27 → 3x + 42 - 6x = 27

42 - 3x = 27 → 3x = 15 → x = 5

y = x + 3 = 5 + 3 → y = 8

z = 17 - x - y → z = 17 - 5 - 8 = 17 - 13 → z = 4

Answer:

4

Step-by-step explanation:

ACCESS MORE