Scores on a college entrance examination are normally distributed with a mean of 500 and a standard deviation of 100. What percent of people who write this exam obtain scores between 350 and 650?

Respuesta :

Answer:

The percentage is [tex]P(350 < X 650 ) = 86.6\%[/tex]

Step-by-step explanation:

From the question we are told that

   The population mean is  [tex]\mu = 500[/tex]

     The standard deviation is  [tex]\sigma = 100[/tex]

The  percent of people who write this exam obtain scores between 350 and 650    

    [tex]P(350 < X 650 ) = P(\frac{ 350 - 500}{ 100} <\frac{ X - \mu }{ \sigma } < \frac{650 - 500}{ 100} )[/tex]

Generally  

               [tex]\frac{X - \mu }{\sigma } = Z (The \ standardized \ value \ of \ X )[/tex]

   [tex]P(350 < X 650 ) = P(\frac{ 350 - 500}{ 100} <Z < \frac{650 - 500}{ 100} )[/tex]

   [tex]P(350 < X 650 ) = P(-1.5<Z < 1.5 )[/tex]

   [tex]P(350 < X 650 ) = P(Z < 1.5) - P(Z < -1.5)[/tex]

From the z-table  [tex]P(Z < -1.5 ) = 0.066807[/tex]

   and [tex]P(Z < 1.5 ) = 0.93319[/tex]

=>    [tex]P(350 < X 650 ) = 0.93319 - 0.066807[/tex]

=>  [tex]P(350 < X 650 ) = 0.866[/tex]

Therefore the percentage is  [tex]P(350 < X 650 ) = 86.6\%[/tex]

ACCESS MORE