A hydraulic press has one piston of diameter 4.0 cm and the other piston of diameter 8.0 cm. What force must be applied to the smaller piston to obtain a force of 1600 N at the larger piston

Respuesta :

Answer:

The  force is [tex]F_1 = 400.8 \ N[/tex]

Explanation:

From the question we are told that

   The first  diameter is  [tex]d_1 = 4.0 \ cm = 0.04 \ m[/tex]

   The second diameter is  [tex]d_2 = 8.0 \ cm = 0.08 \ m[/tex]

   

Generally the first area is  

         [tex]A_1 = \pi * \frac{d^2_1 }{4}[/tex]

=>      [tex]A_1 = 3.142 * \frac{0.04^2}{4}[/tex]

=>       [tex]A_1 = 0.00126 \ m^2[/tex]

The  second area is  

     [tex]A_2 = \pi * \frac{d^2_2 }{4}[/tex]

     [tex]A_2 = 3.142 * \frac{0.08^2}{4}[/tex]

     [tex]A_2 = 0.00503 \ m^2[/tex]

For a hydraulic press the pressure at both end must be equal .

Generally  pressure is mathematically represented as

    [tex]P = \frac{F}{A}[/tex]

=>  

   [tex]\frac{F_1}{A_1 } = \frac{F_2}{A_2 }[/tex]

=>   [tex]F_1 = \frac{1600}{0.00503} * 0.00126[/tex]

=>    [tex]F_1 = 400.8 \ N[/tex]