Answer:
a) 17.667 s
b) 4094 feet
Step-by-step explanation:
a) The position equation of the model is given by:
[tex]s=-16t^2+v_ot+s_o\\\\v_o=initial \ velocity = 158\ miles/hour\\\\s_o=Initial\ height=900\ ft\\\\1 \ mile = 5280\ ft, 1\ hour= 3600\ s\\\\Therefore:\\\\v_o=158\ miles/hour = 158*\frac{5280}{3600}=231.733\ ft/s\\ \\Substituting:\\\\0=-16t^2+231.733t+900\\\\16t^2-231.733t=900\\\\\\16t^2-231.733-900=0\\\\Solving\ the\ quadratic\ equation\ gives:\\\\ t=17.667\ s\ or \ t=-3.184\ s\\\\Since\ the \ time\ cannot\ be\ negative\ therefore\ t=17.667\ s[/tex]
b) The horizontal distance = Initial velocity × time = 231.733 × 17.667 = 4094 feet