Respuesta :
Using
V = Amplitude x angular frequency(omega)
But omega= 2πf
= 2πx875
=5498.5rad/s
So v= 1.25mm x 5498.5
= 6.82m/s
B. .Acceleration is omega² x radius= 104ms²
Answer:
a
[tex]v _{max } = 6.82 \ m/s[/tex]
b
[tex]a_{max} = 37489.5 \ m/s^2[/tex]
Explanation:
From the question we are told that
The amplitude is [tex]A = 1.24 \ mm = 1.24 * 10^{-3} \ m[/tex]
The frequency is [tex]f = 875 \ Hz[/tex]
Generally the maximum speed is mathematically represented as
[tex]v _{max } = A * 2 * \pi * f[/tex]
=> [tex]v _{max } = 1.24*10^{-3} * 2 * 3.142 * 875[/tex]
=> [tex]v _{max } = 6.82 \ m/s[/tex]
Generally the maximum acceleration is mathematically represented as
[tex]a_{max} = A * (2 * \pi * f)[/tex]
=> [tex]a_{max} = 1.24*10^{-3} * (2 * 3.142 * 875 )^2[/tex]
=> [tex]a_{max} = 37489.5 \ m/s^2[/tex]