Answer:
The magnitude of the centripetal acceleration increases by 16 times when the linear speed increases by 4 times.
Explanation:
The initial centripetal acceleration, a of the race-car around the circular track of radius , R with a linear speed v is a = v²/R.
When the linear speed of the race-car increases to v' = 4v, the centripetal acceleration a' becomes a' = v'²/R = (4v)²/R = 16v²/R.
So the centripetal acceleration, a' = 16v²/R.
To know how much the magnitude of the car's centripetal acceleration changes, we take the ratio a'/a = 16v²/R ÷ v²/R = 16
a'/a = 16
a' = 16a.
So the magnitude of the centripetal acceleration increases by 16 times when the linear speed increases by 4 times.