Answer:
[tex]sin\theta =\pm\dfrac{4}{5}\\tan\theta =\pm\dfrac{3}{4}[/tex]
Step-by-step explanation:
Kindly refer to the attached image of a right angled [tex]\triangle ABC[/tex].
Let [tex]\angle C = \theta[/tex]
Sides BC = a
AB = c and
AC = b respectively.
To prove:
[tex]sin^2\theta+cos^2\theta =1[/tex]
Proof:
Using Sine and Cosine values:
[tex]sin\theta =\dfrac{Perpendicular}{Hypotenuse}\\\Rightarrow sin\theta =\dfrac{AB}{AC} = \dfrac{c}{b }[/tex]
[tex]cos\theta =\dfrac{Base}{Hypotenuse}\\\Rightarrow cos\theta =\dfrac{BC}{AC} = \dfrac{a}{b}[/tex]
As per Pythagorean theorem:
[tex]\text{Hypotenuse}^{2} = \text{Base}^{2} + \text{Perpendicular}^{2}\\\Rightarrow b^{2} = a^{2} + c^{2} .......... (1)[/tex]
Considering the LHS of [tex]sin^2\theta+cos^2\theta =1[/tex]:
[tex](\frac{c}{b})^2+(\frac{a}{b})^2\\\Rightarrow \frac{c^2+a^2}{b^2}[/tex]
Now, using equation (1):
[tex]\Rightarrow \dfrac{b^2}{b^2} = 1 = RHS[/tex]
Hence, proved that : [tex]sin^2\theta+cos^2\theta =1[/tex]
Now, we are given that:
[tex]cos\theta =\frac{4}{5}[/tex]
To find, sine and cosine values of the angle i.e. [tex]sin\theta = ?[/tex] and [tex]tan\theta = ?[/tex]
Using [tex]sin^2\theta+cos^2\theta =1[/tex]:
[tex]sin^2\theta+(\dfrac{4}{5})^2 =1\\\Rightarrow sin^2\theta = \dfrac{9}{25}\\\Rightarrow sin\theta = \pm \dfrac{3}{5}[/tex]
We know that:
[tex]tan\theta =\dfrac{sin\theta}{cos\theta}\\\Rightarrow tan\theta =\pm \dfrac{\dfrac{3}{5}}{\dfrac{4}{5}}\\\Rightarrow \bold{tan\theta =\pm \dfrac{3}{4}}[/tex]