Respuesta :

Answer:

[tex]log_{17}52.875 = log_{10}52.875 : log_{10}17}[/tex]

Step-by-step explanation:

Given

[tex]log_{17}(52.875)[/tex]

Required

Convert to base 10

To do this, we make use of the following logarithm laws;

[tex]log_ba = \frac{log_{10}a}{log_{10}b}[/tex]

In the given parameters;

[tex]a = 52.875[/tex]

[tex]b = 17[/tex]

Substitute these values in [tex]log_ba = \frac{log_{10}a}{log_{10}b}[/tex]

[tex]log_{17}52.875 = \frac{log_{10}52.875}{log_{10}17}[/tex]

Represent as a ratio

[tex]log_{17}52.875 = log_{10}52.875 : log_{10}17}[/tex]

Hence;

[tex]log_{17}(52.875)[/tex] is represented as [tex]log_{17}52.875 = log_{10}52.875 : log_{10}17}[/tex]

Expression  [tex]log_{17} 52.875[/tex] can be written as in form of ratio of log  [tex]\frac{log_{10} 52.875}{log_{10} 17}[/tex] .

Any logarithmic expression [tex]log_{a} b[/tex] can we written as in form of ratio of log on base 10.

                   [tex]log_{a} b=\frac{log_{10} b}{log_{10} a}[/tex]

Here logarithmic expression is,  [tex]log_{17} 52.875[/tex] comparing with above expression.

We get,    [tex]b=52.875,a=17[/tex]

Substitute values of a and b in above expression.

 We get,      [tex]log_{17} 52.875=\frac{log_{10} 52.875}{log_{10} 17}[/tex]

Learn more:

https://brainly.com/question/12049968